Campana, F. A generalized geometric version of the product theorem of Nadel. (Une version géométrique généralisée du théorème du produit de Nadel.) (French) Zbl 0783.14023 Bull. Soc. Math. Fr. 119, No. 4, 479-493 (1991). See the review below of the author’s same titled paper in C. R. Acad. Sci., Paris, Sér. I 312, No. 11, 853-856 (1991). Reviewer: F.L.Zak (Moskva) Cited in 2 ReviewsCited in 2 Documents MSC: 14J45 Fano varieties 57R20 Characteristic classes and numbers in differential topology Keywords:product theorem of Nadel; bound for Chern class; Fano variety; movable rational curve Citations:Zbl 0783.14024 × Cite Format Result Cite Review PDF Full Text: DOI Numdam EuDML References: [1] CAMPANA (F.) . - Coréduction algébrique d’un espace analytique faiblement Kählérien compact , Invent. Math., t. 63, 1981 , p. 187-223. MR 84e:32028 | Zbl 0436.32024 · Zbl 0436.32024 · doi:10.1007/BF01393876 [2] DEMAILLY (J.-P.) . - Transcendental proof of a generalized Kawamata-Viehweg vanishing theorem . - Preprint, 1988 . · Zbl 1112.32303 [3] KODAIRA (K.) . - A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds , Ann. Math., t. 75, 1962 , p. 146-162. MR 24 #A3665b | Zbl 0112.38404 · Zbl 0112.38404 · doi:10.2307/1970424 [4] KOLLAR (J.) and MATSUSAKA (T.) . - Riemann-Roch type inequalities , Amer. J. Math., t. 105, 1983 , p. 229-252. MR 85c:14007 | Zbl 0538.14006 · Zbl 0538.14006 · doi:10.2307/2374387 [5] NADEL (A.) . - A finiteness theorem for Fano 4. Folds . - Preliminary version. [6] NADEL (A.) . - The boundedness of degree of Fano Varieties with Picard number one . - Preprint MIT, 1990 . [7] TSUJI (H.) . - Boundness of the degree of Fano manifolds with b2 = 1 , Preprint 1990 . This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.