×

A property of factorizable groups. (English) Zbl 0783.20016

If the finite soluble group \(G=AB\) is the product of subgroups \(A\) and \(B\), then it is shown that \(O_ \pi(A)\cap O_ \pi(B)\subseteq O_ \pi(G)\) for every set of primes (Theorem 1). This result is then generalized to more general situations. For instance, a corresponding statement holds when \(G\) is a periodic hyperabelian group with no perfect subgroups and no infinite elementary abelian groups involved in \(O_ \pi(A)\) (Corollary 1).
Reviewer: B.Amberg (Mainz)

MSC:

20E22 Extensions, wreath products, and other compositions of groups
20F50 Periodic groups; locally finite groups
20E07 Subgroup theorems; subgroup growth
20D40 Products of subgroups of abstract finite groups
20D20 Sylow subgroups, Sylow properties, \(\pi\)-groups, \(\pi\)-structure
20D10 Finite solvable groups, theory of formations, Schunck classes, Fitting classes, \(\pi\)-length, ranks
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] S. I.Adian, The Burnside Problem and Identities in Groups. Berlin-Heidelberg-New York 1979.
[2] B. Amberg, Infinite factorized groups. LNM1398, 1-24, Berlin-Heidelberg-New York 1989. · Zbl 0684.20020
[3] B. Amberg, S. Franciosi andF. de Giovanni, Rank formulae for factorized groups. Ukrain. Mat. Zh.43, 1084-1087 (1992). · Zbl 0786.20013
[4] S. Franciosi andF. de Giovanni, On trifactorized groups of finite rank. Geom. Dedicata38, 331-341 (1991). · Zbl 0722.20025 · doi:10.1007/BF00181195
[5] W. Feit andJ. Thompson, Solvability of groups of odd order. Pacific J. Math.13, 1257-1262 (1961). · Zbl 0104.25103
[6] D.Gorenstein, Finite Groups. New York-Evanston-London 1968.
[7] H. Heineken, Products of finite nilpotent groups. Math. Ann.287, 643-652 (1990). · Zbl 0687.20013 · doi:10.1007/BF01446920
[8] P. Z. Hermann, On ?-quasinormal subgroups in finite groups. Arch. Math.53, 228-234 (1989). · Zbl 0681.20013 · doi:10.1007/BF01277055
[9] L. S. Kazarin, On the product of two groups that are close to being nilpotent. Mat. Sb. (N.S.)110, 51-65 (1979); English translation in Math. USSR Sb.38, 47-59 (1981).
[10] L. S. Kazarin, Factorizations of finite groups by solvable subgroups. (English translation.) Ukranian Math. J.43, 1012-1018 (1991).
[11] M. W.Liebeck, C. E.Praeger and J.Saxl, Factorizations of simple groups. Mem. Amer. Math. Soc.86, Providence 1990. · Zbl 0703.20021
[12] R. Maier, Um problema da teoria dos subgrupos subnormais. Bol. Soc. Brasil Mat.8, 127-130 (1977). · Zbl 0425.20021 · doi:10.1007/BF02584727
[13] V. D.Mazurov, Y. I.Merzlyakov and V. A.Churkin, The Kourovka notebook. Unsolved problems in group theory. Amer. Math. Soc. Transl. Ser. 2,121, Providence R. I. 1983. · Zbl 0512.20001
[14] G. L. Walls, Non-simple groups which are the product of simple groups. Arch. Math.53, 209-216 (1989). · doi:10.1007/BF01277053
[15] H. Wielandt, Subnormalit?t in faktorisierten endlichen Gruppen. J. Algebra69, 305-311 (1981). · Zbl 0454.20027 · doi:10.1016/0021-8693(81)90207-6
[16] J. S. Wilson, Soluble groups which are products of groups of finite rank. J. London Math. Soc. (2)40, 405-419 (1989). · Zbl 0706.20027 · doi:10.1112/jlms/s2-40.3.405
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.