zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations. (English) Zbl 0783.35020
Let $\Omega$ be a bounded open set of $\bbfR\sp N$, $1<p$, $p'<\infty$, $1/p+1/p'=1$. Consider the nonlinear elliptic equations $$-\text{div} a(x,u\sb n,Du\sb n)=f\sb n+ g\sb n \quad \text{in } {\cal D}'(\Omega) \tag 1 $$ where $a:\Omega \times \bbfR \times \bbfR\sp N \to \bbfR\sp N$ is a Carathéodory function satisfying the classical Leray-Lions hypotheses. Assume that $u\sb n\rightharpoonup u$ weakly in $W\sp{1,p}(\Omega)$, strongly in $L\sp p\sb{\text{loc}}(\Omega)$ and a.e. in $\Omega$, and $f\sb n \to f$ strongly in $W\sp{-1,p'} (\Omega)$. Moreover, assume that $g\sb n \in W\sp{-1,p'}(\Omega)$ is bounded in the space ${\cal M}(\Omega)$ of Radon measures. In the present paper, the authors prove that $Du\sb n \to Du$ strongly in $\bigl( L\sp q(\Omega) \bigr)\sp N$ for any $q<p$. This implies that, for a suitable subsequence $n'$, $Du\sb{n'} \to Du$ a.e. in $\Omega$ (cf. the title of the paper) and, moreover, that it is allowed to pass to the limit in (1) such that $-\text{div} a(x,u,Du) = f+g$ in ${\cal D}'(\Omega)$. Besides, under the stronger hypotheses $a(x,s,\zeta) \zeta \ge \alpha \vert \zeta \vert\sp p$ for some $\alpha>0$ (a.e. $x \in \Omega$, and $s \in \bbfR$, $\zeta \in \bbfR\sp N$ arbitrary) and $g\sb n \rightharpoonup g$ weakly in $L\sp 1(\Omega)$, they show that, for any fixed $k>0$, the truncation $T\sb k$ of $u\sb n$ at height $k$ satisfies $DT\sb k(u\sb n) \to DT\sb k(u)$ strongly in $\bigl( L\sp p\sb{\text{log}} (\Omega) \bigr)\sp N$. Under suitably modified assumptions, corresponding results are obtained also in the parabolic case, i.e., when (1) is replaced by $$\partial u\sb n/ \partial t-\text{div} a(x,t,u\sb n,Du\sb n)=f\sb n+g\sb n \quad \text{in } {\cal D}'\bigl( \Omega \times(0,T)\bigr)\ (T>0 \text{ fixed}).$$

35J60Nonlinear elliptic equations
35K55Nonlinear parabolic equations
35B99Qualitative properties of solutions of PDE
Full Text: DOI
[1] Boccardo, L.; Murat, F.; Puel, J. -P.: Existence de solutions non bornées pour certaines équations quasilinéaires. Portugaliae math. 41, 507-534 (1982) · Zbl 0524.35041
[2] Meyers, N. G.: An lp-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. scu. Norm. sup. Pisa 17, 189-206 (1963) · Zbl 0127.31904
[3] Murat, F.: L’injection du cône positif de H-1 dans W-1,q est compacte pour tout q 2. J. math. Pures appl. 60, 309-322 (1981) · Zbl 0471.46020
[4] Frehse, J.: A refinement of Rellich’s theorem. Rend. mat. 5, 229-242 (1985) · Zbl 0666.46041
[5] Landes, R.: On the existence of weak solutions of perturbed systems with critical growth. J. reine angew. Math. 393, 21-38 (1989) · Zbl 0664.35027
[6] Boccardo, L.; Murat, F.: Strongly nonlinear Cauchy problems with gradient dependent lower order nonlinearity. Pitman research notes in mathematics 208, 247-254 (1989) · Zbl 0703.35094
[7] Boccardo, L.; Gallouet, T.: Nonlinear elliptic and parabolic equations involving measure data. J. funct. Analysis 87, 149-169 (1989) · Zbl 0707.35060
[8] Boccardo, L.; Giachetti, D.; Murat, F.: A generalization of a theorem of H. Brezis & F.E. Browder and applications to some unilateral problems. Ann. inst. Poincaré, analyse non lin. 7, 367-384 (1990) · Zbl 0716.46032
[9] Del Vecchio, T.: Strongly nonlinear problems with Hamiltonian having natural growth. Houston J. Math. 16 (1990) · Zbl 0714.35035
[10] Landes, R.: Solvability of perturbed elliptic equations with critical growth exponent for the gradient. J. math. Analysis applic. 139, 63-77 (1989) · Zbl 0691.35038
[11] Hedberg L. & Murat F., Compactness of intervals in some spaces of distributions (to appear).
[12] Leray, J.; Lions, J. -L.: Quelques résultats de visik sur LES problèmes elliptiques non linéaires par LES méthodes de minty-Browder. Bull. soc. Math. fr. 93, 97-107 (1965) · Zbl 0132.10502
[13] Lions, J. -L.: Quelques méthodes de résolution des problémes aux limites nonlinéaires. (1969)
[14] Cioranescu, D.; Murat, F.: Un terme étrange venu d’ailleurs. Research notes in mathematics 60 & 70, 98-138 (1982) · Zbl 0496.35030
[15] Bensoussan A., Boccardo L. & Murat F., H-convergence for quasilinear elliptic equations with quadratic growth (to appear). · Zbl 0795.35008
[16] Browder, F. E.: Existence theorems for nonlinear partial differential equations. Proc. symp. Pure math., 1-60 (1970) · Zbl 0211.17204
[17] Boccardo, L.; Murat, F.; Puel, J. -P.: Existence of bounded solutions for nonlinear elliptic unilateral problem. Ann. mat. Pura appl. 152, 183-196 (1988) · Zbl 0687.35042
[18] Boccardo, L.; Giachetti, D.: Strongly nonlinear unilateral problems. Appl. math. Opt. 9, 291-301 (1983) · Zbl 0535.49010
[19] Simon, J.: Compact sets in the space $Lp(0, T; B)$. Ann. mat. Pura appl. 146, 65-96 (1987)
[20] Boccardo, L.; Murat, F.; Puel, J. -P.: Existence results for some quasilinear parabolic equations. Nonlinear analysis 13, 373-392 (1989) · Zbl 0705.35066