Gilioli, Antonio Natural ultrabornological, non-complete, normed function spaces. (English) Zbl 0783.46003 Arch. Math. 61, No. 5, 465-477 (1993). Using a method with a family of projections \((P_ \lambda)_{\lambda\in[a,b]}\) it is proved that certain subspaces of Fréchet spaces are ultrabornological. It turns out that many elementary spaces of classical analysis, which are non-complete subspaces of the space of continuous functions on \([a,b]\) with values in a Banach space, are ultrabornological. In particular, the space of Denjoy-Perron- Kurzweil-Henstock-integrable functions, under the Alexiewicz norm, is ultrabornological. These new examples of non-complete, normed ultrabornological spaces seem to be the simplest ones known so far. Reviewer: K.Floret (Oldenburg) and Ch.Hönig (São Paulo) Cited in 1 ReviewCited in 2 Documents MSC: 46A08 Barrelled spaces, bornological spaces 46E15 Banach spaces of continuous, differentiable or analytic functions Keywords:subspaces of Fréchet spaces; ultrabornological; space of Denjoy-Perron- Kurzweil-Henstock-integrable functions; Alexiewicz norm; examples of non- complete, normed ultrabornological spaces PDF BibTeX XML Cite \textit{A. Gilioli}, Arch. Math. 61, No. 5, 465--477 (1993; Zbl 0783.46003) Full Text: DOI References: [1] A.Gilioli, The ultrabornologicalness of the space of Denjoy-Perron-Kurzweil integrable functions and of other natural non-complete subspaces ofC([a, b],X) and of ?E j . 31{\(\deg\)}-Sem. Bras. Análise, 323-367 (1990). [2] A.Gilioli, Part II of [G1]; 32{\(\deg\)}-Sem. Bras. Análise, 51-60 (1990). [3] P.Pérez Carreras and J.Bonet, Barrelled locally convex spaces. North-Holland Math. Stud.131, Amsterdam-New York 1987. · Zbl 0614.46001 [4] L. Drewnowski, M. Florencio andP. J. Paúl, The space of Pettis integrable functions is barrelled. Proc. Amer. Math. Soc.114, 687-694 (1992). · Zbl 0747.46026 [5] A.Grothendieck, Espaces vectoriels topologiques; 3rd ed. São Paulo 1964. · Zbl 0316.46001 [6] C. S.Hönig, There is no natural Banach space norm on the space of Kurzweil-Henstock-Denjoy-Perron integrable functions. 30{\(\deg\)}-Sem. Bras. Análise, 387-397 (1989). [7] R. Henstock, A Riemann type integral of Lebesgue power. Canad. J. Math.20, 79-87 (1968). · Zbl 0171.01804 [8] J. Kakol, Non-locally convexb-Baire-like spaces and spaces with generalized inductive limit topology. Rev. Roumaine Math. Pures Appl.25, 1523-1530 (1980). · Zbl 0466.46006 [9] G.Köthe, Topological vector spaces I. Berlin-Heidelberg-New York 1969. · Zbl 0179.17001 [10] G.Köthe, Topological vector spaces II. Berlin-Heidelberg-New York 1979. · Zbl 0417.46001 [11] J. Kurzweil, Generalized ordinary differential equations and continuous dependence on a parameter. Czechoslavak Math. J.7, 418-446 (1957). · Zbl 0090.30002 [12] K. Ostaszewski, The space of Henstock integrable functions of two variables. Internat. J. Math. Math. Sci.11, 15-22 (1988). · Zbl 0662.26003 [13] S.Saks, Theory of integral; 2nd ed. Dover 1964. · Zbl 1196.28001 [14] W. L. C. Sargent, On some theorems of Hahn, Banach and Steinhaus. J. London Math. Soc.28, 438-451 (1953). · Zbl 0053.08101 [15] S. A. Saxon, Some normed barelled spaces which are not Baire. Math. Ann.209, 153-160 (1974). · Zbl 0295.46004 [16] B. S. Thomson, Spaces of conditionally integrable functions. J. London Math. Soc. (2)2, 358-360 (1970). · Zbl 0189.12701 [17] M. Valdivia, Sur certains hyperplans qui ne sont pas ultrabornologiques dans les spaces ultrabornologiques. C.R. Acad. Sci. Paris Sér I Math.284, 935-937 (1977). · Zbl 0344.46006 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.