Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle. (English) Zbl 0783.58053

Summary: We present two hypotheses on the mathematical mechanism underlying bursting dynamics in a class of differential systems: (1) that the transition from continuous firing of spikes to bursting is caused by a crisis which destabilizes a chaotic state of continuous spiking; and (2) that the bursting corresponds to a homoclinicity to this unstable chaotic state. These propositions are supported by a numerical test on the Hindmarsh-Rose model, a prototype of its kind. We conclude by a unified view for three types of complex multi-modal oscillations: homoclinic systems, bursting, and the Pomeau-Manneville intermittency.


37G99 Local and nonlocal bifurcation theory for dynamical systems
34C23 Bifurcation theory for ordinary differential equations
82C05 Classical dynamic and nonequilibrium statistical mechanics (general)
Full Text: DOI


[1] Alexander, J. C.; Cai, D. Y., J. Math. Biol., 29, 405 (1991)
[2] Chay, T. R.; Keizer, J., Biophys. J., 42, 181 (1983)
[3] Chay, T. R.; Rinzel, J., Biophys. J., 47, 357 (1985)
[4] Decroly, O.; Goldbeter, A., J. Theor. Biol., 124, 219 (1987)
[5] Doedel, E., Cong. Num., 30, 265 (1981)
[6] Eckmann, J.-P.; Ruelle, D., Rev. Mod. Phys., 57, 617 (1985)
[7] Feigenbaum, M. J., J. Stat. Phys., 19, 25 (1978)
[8] Gaspard, P.; Wang, X.-J., J. Stat. Phys., 48, 151 (1987)
[9] Gavrilov, N. K.; Šil’nikov, L. P., Math. USSR Sb., 19, 139 (1973)
[10] Grebogi, C.; Ott, E.; Yorke, J. A., Phys. Rev. A, 36, 5365 (1987)
[11] Hindmarsh, J. L.; Rose, R. M., Proc. R. Soc. Lond. B, 221, 87 (1984)
[12] Kaas-Petersen, C., (Degn, H.; Holden, A. V.; Olsen, L. F., Chaos in Biological Systems (1987), Plenum: Plenum New York), 183
[13] Li, T.-Y.; Yorke, J. A., Am. Math. Mon., 82, 985 (1975)
[14] Morris, C.; Lecar, H., Biophys. J., 35, 193 (1981)
[15] Newhouse, S., Proc. AMS Symp. Pure Math., 14, 191 (1970)
[16] Publ. Math. IHES, 50, 101 (1979)
[17] Ovsyannikov, I. M.; Šil’nikov, L. P., Math. USSR Sb., 58, 557 (1987)
[18] Pomeau, Y.; Manneville, P., Commun. Math. Phys., 74, 189 (1980)
[19] Rinzel, J., (Sleemon, B. D.; Jarvis, R. J., Ordinary and Partial Differential Equations (1985), Springer: Springer New York), 304
[20] Rinzel, J., (Gleason, A. M., Proc. Int. Congress of Mathematicians (1987), Am. Math. Soc: Am. Math. Soc Providence, RI), 1578
[21] Rinzel, J.; Lee, Y. S., (Othmer, H. G., Nonlinear Oscillations in Biology and Chemistry (1986), Springer: Springer New York), 19
[22] Rinzel, J.; Ermentrout, G. B., (Koch, C.; Segev, I., Methods in Neuronal Modeling, From Synapses to Networks (1989), MIT Press: MIT Press Boston), 135
[23] Robinson, C., Commun. Math. Phys., 90, 433 (1983)
[24] Selverston, A. I.; Moulin, M., Ann. Rev. Physiol., 47, 29 (1985)
[25] Math. USSR Sb., 10, 91 (1970)
[26] Šil’nikov, L. P., Soviet Math. Dokl., 9, 624 (1968)
[27] Steriade, M.; Jones, E. G.; Llinás, R. R., Thalamic Oscillations and Signaling (1990), Wiley: Wiley New York
[28] Tedeschini-Lalli, L.; Yorke, J. A., Commun. Math. Phys., 106, 635 (1986)
[29] Terman, D., SIAM J. Appl. Math., 51, 1418 (1991)
[30] Terman, D., The transition from bursting to continuous spiking in excitable membrane models (1991), Ohio State University at Columbus, preprint · Zbl 0900.92059
[31] van Strien, S. J., (Lecture Notes in Mathematics, Vol. 898 (1981), Springer: Springer Berlin), 316
[32] Wang, X.-J., Commun. Math. Phys., 131, 317 (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.