zbMATH — the first resource for mathematics

Variations on the Gram–Schmidt and the Huang algorithms for linear systems: A numerical study. (English) Zbl 0783.65029
Results of extensive numerical experiments with algorithms for linear systems based on \(LQ\), \(QR\), and Huang type methods are presented. It is shown that the best modified Huang algorithms are essentially as good as the doubly iterated Gram-Schmidt algorithm, applied on the rows of the coefficient matrix and coupled with the \(ABS\) update formula. They are generally more accurate than the stabilized Gram-Schmidt algorithm and the algorithms based on the \(QR\) factorization.

65F10 Iterative numerical methods for linear systems
Full Text: EuDML
[1] Abaffy J.: Equivalence of a generalization of Sloboda’s algorithm with a subclass of the generalized ABS algorithm for linear systems. Quaderno DMSIA I/88(1988), University of Bergamo.
[2] Abaffy J., Broyden C. G., Spedicato E.: A class of direct methods for linear equations. Numerische Mathematik 45 (1984), 361-376. · Zbl 0535.65009 · doi:10.1007/BF01391414 · eudml:132973
[3] Abaffy J., Galántai A.: Conjugate direction methods for linear and nonlinear systems of algebraic equations. Colloquia Mathematica Societatis János Bolyai 50 (1986), 481-502. · Zbl 0639.65022
[4] Abaffy J., Galántai A., Spedicato E.: The local convergence of ABS methods for nonlinear algebraic systems. Numerische Mathematik 51 (1987a), 429-439. · Zbl 0609.65038 · doi:10.1007/BF01397545 · eudml:133204
[5] Abaffy J., Galántai A., Spedicato E.: Application of ABS class to unconstrained function minimization. Quaderno DMSIA 14/77 (1987b), University of Bergamo.
[6] Abaffy J., Spedicato E.: A generalization of the ABS algorithm for linear systems. Quaderno DMSlA 4/85 (1985), University of Bergamo. · Zbl 0657.65040
[7] Abaffy J., Spedicato E.: Numerical experiments with the symmetric algorithm in the ABS class for linear systems. Optimization 18(2) (1987), 197-212. · Zbl 0616.65032 · doi:10.1080/02331938708843232
[8] Abaffy J., Spedicato E.: ABS projection algorithms: mathematical techniques for linear and nonlinear equations. Ellis Horwood, Chichester, 1989. · Zbl 0691.65022
[9] Broyden C. G.: On the numerical stability of Huang’s update. Quaderno DMSIA 18/89 (1989), University of Bergamo. · Zbl 0711.65021 · doi:10.1007/BF02575734
[10] Daniel J., Gragg W. B., Kaufman L., Stewart G. W.: Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization. Mathematics of Computation 30 (1976), 772-795. · Zbl 0345.65021 · doi:10.2307/2005398
[11] Deng N. Y., Spedicato E.: Optimal conditioning parameter selection in the ABS class through a rank two update formulation. Quaderno DMSIA 18/88 (1988), University of Bergamo.
[12] Hoffmann W.: Iterative algorithms for Gram-Schmidt orthogonalization. Computing 41 (1989), 335-348. · Zbl 0667.65037 · doi:10.1007/BF02241222
[13] Huang H. Y.: A direct method for the general solution of a system of linear equations. Journal of Optimization Theory and Applications 16 (1975), 429-445. · Zbl 0291.90038 · doi:10.1007/BF00933852
[14] More J. J., Cosnard M. Y.: Numerical solution of nonlinear equations. ACM Trans. 5 (1979), 64-85. · Zbl 0393.65019 · doi:10.1145/355815.355820
[15] Rutishauser H.: On test matrices. Progrès en Mathématiques Numériques (M. Kuntzmann, Editions de la Faculté de Science de Besançon, 1968. · Zbl 0209.17502
[16] Sloboda F.: A parallel projection method for linear algebraic systems. Apl. Mat. Českosl. Akad. Ved 25 (1978), 185-198. · Zbl 0398.65013 · eudml:15049
[17] Spedicato E.: Optimal conditioning parameter selection in the ABS class for linear systems. Report 203, Mathematische Institute, University of Würzburg, 1987. · Zbl 0676.65037
[18] Spedicato E., Vespucci M. T.: Variations on the Gram-Schmidt and the Huang algorithms for linear systems: a numerical study. Quaderno DMSIA 21/89(1989), University of Bergamo. · Zbl 0783.65029 · eudml:15738
[19] Yang Z.: On the numerical stability of the Huang and the modified Huang algorithms and related topics. Collection of reports on the ABS class of algorithms, 5, Department of Applied Mathematics, Dalian University of Technology, 1988.
[20] Zielke G.: Report on test matrices for generalized inverses. Computing 36 (1986), 105-162. · Zbl 0566.65026 · doi:10.1007/BF02238196
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.