Schwabik, Štefan The Perron integral in ordinary differential equations. (English) Zbl 0784.34006 Differ. Integral Equ. 6, No. 4, 863-882 (1993). A finite sequence of numbers \(D=\{\alpha_ 0,\tau_ 1,\alpha_ 1,\cdots, \alpha_{k-1},\tau_ k,\alpha_ k\}\) is called a partition of an interval \([a,b]\) if \(a=\alpha_ 0<\alpha_ 1< \cdots<\alpha_ k=b\) and \(\alpha_{j-1}\leq \tau_ j\leq\alpha_ j\), \(j=1,2,\dots,k\). Given a positive function \(\delta: [a,b]\to (0,\infty)\), called a gauge, the partition \(D\) is called \(\delta\)-fine if \([\alpha_{j-1},\alpha_ j]\subset [\tau_ j- \delta(\tau_ j), \tau_ j+\delta(\tau_ j)]\), \(j=1,2,\dots,k\). Let a function \(f:[a,b]\times \mathbb{R}^ n\to \mathbb{R}^ n\) satisfy the following conditions: (1) \(f(t,\cdot)\) is continuous for almost all \(t\in[a,b]\), (2) the integral \(\int_ a^ b f(s,z)ds\) in the sense of Perron exists for every \(z\in\mathbb{R}^ n\), (3) there is a compact set \(S\subset\mathbb{R}^ n\) and a gauge \(\delta\) on \([a,b]\) such that for all \(\delta\)-fine partitions \(\{\alpha_ 0,\tau,\dots,\alpha_ k\}\) and all functions \(w:[a,b]\to\mathbb{R}^ n\) we have: \(\sum_{i=1}^ k f(\tau_ i, w(\tau_ i)) (\alpha_ i- \alpha_{i-1})\in S\). The author shows that under these conditions for every \(v\in\mathbb{R}^ n\) and \(\alpha\in[a,b]\) there is a function \(y:[a,b]\to \mathbb{R}^ n\) such that \(y(t)=v+ \int_ \alpha^ t f(s,y(s))ds\) for \(t\in[a,b]\), where the integral is understood in the sense of Perron. Reviewer: L.Janos (Los Angeles) Cited in 11 Documents MSC: 34A12 Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations 34A34 Nonlinear ordinary differential equations and systems 26A39 Denjoy and Perron integrals, other special integrals Keywords:partition; gauge; integral; in the sense of Perron PDF BibTeX XML Cite \textit{Š. Schwabik}, Differ. Integral Equ. 6, No. 4, 863--882 (1993; Zbl 0784.34006)