Golse, F.; Poupaud, F. Fluid limit for Boltzmann equations of semiconductors in Fermi–Dirac statistics. (Limite fluide des équations de Boltzmann des semi-conducteurs pour une statistique de Fermi-Dirac.) (French) Zbl 0784.35084 Asymptotic Anal. 6, No. 2, 135-160 (1992). The authors consider the kinetic equations system of semiconductor physics in the case of Fermi-Dirac statistics. They prove existence and smoothness of the solutions as well as their convergence properties. The entropy inequality implies coercivity of the collision operator, strong and weak convergence. In the linear case one finds the spectrum. The fluid limit is also considered. 22 Refs. Reviewer: S.M.Zverev (L’vov) Cited in 1 ReviewCited in 26 Documents MSC: 35Q35 PDEs in connection with fluid mechanics 35Q60 PDEs in connection with optics and electromagnetic theory 76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics Keywords:regularity; semiconductors; Fermi-Dirac statistics; existence; smoothness; convergence; spectrum; fluid limit PDF BibTeX XML Cite \textit{F. Golse} and \textit{F. Poupaud}, Asymptotic Anal. 6, No. 2, 135--160 (1992; Zbl 0784.35084) OpenURL