Vishnevskij, M. P. Solvability of an inverse problem for the parabolic equation with convergence. (English. Russian original) Zbl 0784.35123 Sib. Math. J. 33, No. 3, 402-408 (1992); translation from Sib. Mat. Zh. 33, No. 3, 42-49 (1992). The evolution equation \(u_ t=L(x)u+q(x)u+f(x,t)\), \(L\) a second order elliptic operator, is considered on \(\Omega \times(-\infty,+\infty)\), \(\Omega \subset \mathbb{R}^ n\), with a Dirichlet boundary condition on \(\partial \Omega \times(-\infty,+\infty)\). If \(u(x,0)=u_ 0(x)\) is given the author provides criteria concerning the unique solvability of the coefficient determination problem for \(q(x)\). Reviewer: G.Bruckner (Berlin) MSC: 35R30 Inverse problems for PDEs 35K20 Initial-boundary value problems for second-order parabolic equations Keywords:inverse problem; evolution equation; Dirichlet boundary condition; unique solvability; coefficient determination problem PDF BibTeX XML Cite \textit{M. P. Vishnevskij}, Sib. Math. J. 33, No. 3, 42--49 (1992; Zbl 0784.35123); translation from Sib. Mat. Zh. 33, No. 3, 42--49 (1992)