×

zbMATH — the first resource for mathematics

Quasicontinuous selections for compact-valued multifunctions. (English) Zbl 0784.54023
Summary: Quasicontinuous selection theorems for multifunctions \(F: X\to Y\) with compact values in special metric spaces are presented. The method used here enables us to work with an arbitrary topological space \(X\).

MSC:
54C65 Selections in general topology
54C08 Weak and generalized continuity
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] KEMPISTY S.: Sur les fonctions quasicontinues. Fund. Math. 19 (1932), 189-197. · Zbl 0005.19802
[2] KUPKA I.: Quasicontinuous selections for one-to-finite multifunctions. Acta Math. Univ. Comenian. LVIII-LIX (1992), 207-214. · Zbl 0736.54011
[3] KUPKA I.: Special selections in very general spaces. (Slovak) Dissertation, Komensky University, Bratislava, 1990.
[4] LEVINE N.: Semi-open sets and semi-continuity in topological spaces. Amer. Math. Monthly 70 (1963), 36-41. · Zbl 0113.16304
[5] MATEJDES M.: Sur les sélecteurs des multifonctions. Math. Slovaca 37 (1987), 111-124. · Zbl 0629.54013
[6] MICHAEL E.: Continuous selections I. Trans. Amer. Math. Soc. 71 (1951), 152-182.
[7] MICHAEL E.: Selected selection theorems. Amer. Math. Monthly 63 (1956), 361-382. · Zbl 0070.39502
[8] NADLER S. B.: Hyperspaces of Sets. Marcel Dekker, Inc., New York-Bassel, 1978. · Zbl 0432.54007
[9] NEUBRUNN T.: Quasi-continuity. Real Anal. Exchange 14 (1988-89), 259-306. · Zbl 0679.26003
[10] NEUBRUNNOVÁ A.: On certain generalizations of the notion of continuity. Mat. Čas. 23 (1973), 374-380.
[11] PIOTROWSKI Z.: A survey of results concerning generalized continuity on topological spaces. Acta Math. Univ. Comenian. 52-53 (1987), 91-110. · Zbl 0693.54007
[12] SOLTAN V. P.: Introduction to Axiomatic Theory of Convexity. (Russian), Štiinca, Kišinev, 1984. · Zbl 0559.52001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.