Guivarc’h, Yves; Le Jan, Yves Asymptotic winding of the geodesic flow on modular surfaces and continuous fractions. (English) Zbl 0784.60076 Ann. Sci. Éc. Norm. Supér. (4) 26, No. 1, 23-50 (1993). From the introduction: Here we present, in a very specific case, a result analogous to Spitzer’s theorem which describes the asymptotic law of the windings of a two-dimensional Brownian motion around a point. The spaces we consider are modular surfaces obtained as quotients of the hyperbolic plane by normal subgroups of finite index in the modular group SL\(_ 2(\mathbb{Z})\). Such a modular surface has finite hyperbolic area and is naturally compactified in a compact Riemann surface of genus \(g\) by adding \(c\) points (cusps). Then, roughly speaking, our main result says that the normalized homological winding of the geodesic flow converges toward the product of the two non-degenerate probobability laws. The first one is a \(2g\)-dimensional Gaussian law associated with the compactification; the second one is a \((c-1)\)-dimensional Cauchy law which is itself the convolution of \(c\) elementary Cauchy laws corresponding to the cusps. Reviewer: Yu.N.Bibikov (St.Peterburg) Cited in 1 ReviewCited in 27 Documents MSC: 60J65 Brownian motion 58J65 Diffusion processes and stochastic analysis on manifolds Keywords:degenerate probability laws; windings of a two-dimensional Brownian motion; modular surfaces; compact Riemann surface; geodesic flow; Cauchy laws PDFBibTeX XMLCite \textit{Y. Guivarc'h} and \textit{Y. Le Jan}, Ann. Sci. Éc. Norm. Supér. (4) 26, No. 1, 23--50 (1993; Zbl 0784.60076) Full Text: DOI Numdam EuDML References: [1] J. DIEUDONNÉ , Éléments d’analyse 9 , Gauthier-Villars, Paris, 1982 . · Zbl 0485.58001 [2] J. FRANCHI , Théorèmes des résidus asymptotiques pour le mouvement Brownien sur une surface riemannienne compacte (Ann. I.H.P., Vol. 27, 1991 , pp. 445-462). Numdam | MR 92k:60112 | Zbl 0746.60059 · Zbl 0746.60059 [3] S. HU , Homotopy Theory , Academy Press, 1959 . MR 21 #5186 · Zbl 0088.38803 [4] Y. GUIVARC’H and G. HARDY , Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d’Anosov (Ann. I.H.P., Vol. 24, 1988 , pp. 73-98). Numdam | MR 89m:60080 | Zbl 0649.60041 · Zbl 0649.60041 [5] Y. GUIVARC’H and Y. LE JAN , Sur l’enroulement du flot géodésique (C.R. Ac. Sc. Paris, T. 311, Série I, 1990 , pp. 645-648). MR 92b:58175 | Zbl 0727.58033 · Zbl 0727.58033 [6] G. HARDY and E. M. WRIGHT , An Introduction to the Theory of Numbers , University Press, Oxford, 1975 . · Zbl 0020.29201 [7] A. JAKUBOWSKI and M. KOBUS , \alpha -Stable Limit Theorems for Sums of Dependent Random Vectors (J. Mult. Analysis, Vol. 29, 1989 , pp. 219-251). MR 91a:60065 | Zbl 0687.60025 · Zbl 0687.60025 · doi:10.1016/0047-259X(89)90025-0 [8] T. KATO , Perturbation Theory for Linear Operators , Springer, Berlin, Heidelberg, New York, 1976 . MR 53 #11389 | Zbl 0342.47009 · Zbl 0342.47009 [9] A. KATSUDA and T. SUNADA , Closed Orbits in Homology Classes (Pub. Math. I.H.E.S., Vol. 71, 1990 ). Numdam | MR 92m:58102 | Zbl 0728.58026 · Zbl 0728.58026 · doi:10.1007/BF02699875 [10] J. LEHNER , Discontinuous Groups and Automorphic Functions (A.M.S., Providence, 1964 ). MR 29 #1332 | Zbl 0178.42902 · Zbl 0178.42902 [11] P. LÉVY , Fractions continues aléatoires (Rend. Circ. Math. Palermo, 1952 , pp. 1-39). MR 16,600e | Zbl 0048.36101 · Zbl 0048.36101 · doi:10.1007/BF02847786 [12] T. LYONS and H. P. MC KEAN , Windings of the Plane Brownian Motion , (Advances in Maths, Vol. 51, 1984 , pp. 212-225). MR 85k:60114b | Zbl 0541.60075 · Zbl 0541.60075 · doi:10.1016/0001-8708(84)90007-0 [13] F. NORMAN , Markov Processes and Learning Model (Academic press, 1972 ). Zbl 0262.92003 · Zbl 0262.92003 [14] M. RATNER , The Central Limit Theorem for Geodesic Flows on n Dimensional Manifolds of Negative Curvature (Israël J. of Math., Vol. 16, 1973 , pp. 180-197). MR 48 #11446 | Zbl 0283.58010 · Zbl 0283.58010 · doi:10.1007/BF02757869 [15] D. REVUZ and M. YOR , Continuous Martingale Calculus and Brownian Motion (to appear). · Zbl 1087.60040 [16] B. SCHOENBERG , Elliptic Modular Functions , Springer, Berlin, Heidelberg, New York, 1974 . · Zbl 0314.65033 [17] C. SERIES , The Modular Surface and Continued Fractions (J. London Math. Soc., Vol. 31, 1985 , pp. 69-80). MR 87c:58094 | Zbl 0545.30001 · Zbl 0545.30001 · doi:10.1112/jlms/s2-31.1.69 [18] Y. G. SINAÏ , The Central Limit Theorem for Geodesic Flows on Manifolds of Constant Negative Curvature (Dokl. Akad. Nauk SSSR, Vol. 133, 1960 , pp. 1303-1306). MR 23 #A2906 | Zbl 0129.31103 · Zbl 0129.31103 [19] F. SPITZER , Some Theorems Concerning Two Dimensional Brownian Motion (Trans. Ann. Math. Soc., Vol. 87, 1958 , pp. 187-197). MR 21 #3051 | Zbl 0089.13601 · Zbl 0089.13601 · doi:10.2307/1993096 [20] G. SPRINGER , Introduction to Rieman Surfaces , Addison-Wesley (Reading, 1957 ). MR 19,1169g | Zbl 0078.06602 · Zbl 0078.06602 [21] SULLIVAN , Disjoint Spheres, Approximation by Imaginary Quadratic Numbers and the Logarithm Law for Geodesics , (Acta Math., Vol. 149, 1983 , pp. 123-237). MR 84j:58097 | Zbl 0517.58028 · Zbl 0517.58028 · doi:10.1007/BF02392354 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.