×

On Bernoulli trials with unequal harmonic success probabilities. (English) Zbl 07846502

Authors’ abstract: A Bernoulli scheme with unequal harmonic success probabilities is investigated, together with some of its natural extensions. The study includes the number of successes over some time window, the times to (between) successive successes and the time to the first success. Large sample asymptotics, statistical parameter estimation, and relations to Sibuya distributions and Yule-Simon distributions are discussed. This toy model is relevant in several applications including reliability, species sampling problems, record values breaking and random walks with disasters.

MSC:

60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
60C05 Combinatorial probability
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Arratia, R.; Barbour, AD; Tavaré, S., Poisson process approximations for the Ewens sampling formula, Ann Appl Probab, 2, 3, 519-535, 1992 · Zbl 0756.60006 · doi:10.1214/aoap/1177005647
[2] Barbour, AD; Hall, P., On the rate of Poisson convergence, Math Proc Camb. Philos Soc, 95, 3, 473-480, 1984 · Zbl 0544.60029 · doi:10.1017/S0305004100061806
[3] Chen, SX; Liu, JS, Statistical applications of the Poisson-Binomial and conditional Bernoulli distributions, Stat Sin, 7, 4, 875-892, 1997 · Zbl 1067.62511
[4] Da Silva PH, Jamshidpey A, Tavaré S (2022) Markov chains arising from biased random derangements. arXiv:2211.13831v1
[5] Denisov, D.; Sakhanenko, A.; Wachtel, V., First-passage times for random walks with nonidentically distributed increments, Ann Probab, 46, 6, 3313-3350, 2018 · Zbl 1434.60126 · doi:10.1214/17-AOP1248
[6] Donnelly, P.; Tavaré, S., The ages of alleles and a coalescent, Adv Appl Probab, 18, 1, 1-19, 1986 · Zbl 0588.92013 · doi:10.2307/1427237
[7] Ewens WJ (1972) The sampling theory of selectively neutral alleles. Theore. Popul Biol 3:87-112; erratum, ibid. 3, 240; erratum, ibid. 3, 376 · Zbl 0245.92009
[8] Gnedin, A.; Pitman, J., Poisson representation of a Ewens fragmentation process, Combin Probab Comput, 16, 6, 819-827, 2007 · Zbl 1129.60091 · doi:10.1017/S0963548306008352
[9] Goncalves, B.; Huillet, T., Scaling features of two special Markov chains involving total disasters, J Stat Phys, 178, 2, 499-531, 2020 · Zbl 1471.60112 · doi:10.1007/s10955-019-02439-5
[10] Goncalves, B.; Huillet, T., Keeping random walks safe from extinction and overpopulation in the presence of life-taking disasters, Math Popul Stud, 29, 128-157, 2021 · Zbl 1498.92162 · doi:10.1080/08898480.2021.1976476
[11] Hayashi, F., Econometrics, 2000, Princeton: Princeton University Press, Princeton · Zbl 0994.62107
[12] Hoadley, B., Asymptotic properties of maximum likelihood estimators for the independent not identically distributed case, Ann Math Stat, 42, 6, 1977-1991, 1971 · Zbl 0226.62033 · doi:10.1214/aoms/1177693066
[13] Holst, L., Counts of failure strings in certain Bernoulli sequences, J Appl Probab, 44, 3, 824-830, 2007 · Zbl 1132.60011 · doi:10.1239/jap/1189717547
[14] Holst, L., On consecutive records in certain Bernoulli sequences, J Appl Probab, 46, 4, 1201-1208, 2009 · Zbl 1187.60006 · doi:10.1239/jap/1261670698
[15] Hong, Y., On computing the distribution function for the Poisson binomial distribution, Comput Stat Data Anal, 59, 41-51, 2013 · Zbl 1400.62036 · doi:10.1016/j.csda.2012.10.006
[16] Hoshino, N., Applying Pitman’s sampling formula to microdata disclosure risk assessment, J Off Stat, 17, 4, 499-520, 2001
[17] Hsu, LC; Shiue, PJ-S, A unified approach to generalized Stirling numbers, Adv Appl Math, 20, 3, 366-384, 1998 · Zbl 0913.05006 · doi:10.1006/aama.1998.0586
[18] Huillet, TE, On a Markov chain model for population growth subject to rare catastrophic events, Physica A, 390, 23-24, 4073-4086, 2011 · doi:10.1016/j.physa.2011.06.066
[19] Johnson, NL; Kotz, S., Urn models and their application, 1977, New York: Wiley, New York · Zbl 0352.60001
[20] Johnson, NL; Kotz, S.; Balakrishnan, N., Discrete multivariate distributions, 1997, New York: Wiley, New York · Zbl 0868.62048
[21] Karlin, S., A first course in stochastic processes, 1966, New York: Academic Press, New York
[22] Kozubowski TJ, Podgórski K (2018) A generalized Sibuya distribution. Ann Inst Stat Math 70(4):855-887 · Zbl 1398.60028
[23] Lehmann, EL, Theory of point estimation, 1983, New York: Springer, New York · Zbl 0522.62020 · doi:10.1007/978-1-4757-2769-2
[24] Lehmann, EL; George, Casella, Theory of point estimation, 1998, New York: Springer, New York · Zbl 0916.62017
[25] Mathai, AM; Provost Serge, B., Quadratic forms in random. Variables statistics: textbooks and monographs, 1992, New York: Marcel Dekker, New York · Zbl 0792.62045
[26] Möhle M (2021) A restaurant process with cocktail bar and relations to the three-parameter Mittag-Leffler distribution. J Appl Probab 58(4):978-1006 · Zbl 1475.60023
[27] Najnudel J, Pitman J (2020) Feller coupling of cycles of permutations and Poisson spacings in inhomogeneous Bernoulli trials. Electron Commun Probab 25, article no. 73, 11pp · Zbl 1469.60047
[28] Neuts, MF, Waitingtimes between record observations, J Appl Probab, 4, 1, 206-208, 1967 · Zbl 0152.16902 · doi:10.2307/3212314
[29] Pemantle, R., A survey of random processes with reinforcement, Probab Surv, 4, 1-79, 2007 · Zbl 1189.60138 · doi:10.1214/07-PS094
[30] Philippou, AN; Roussas, GG, Asymptotic normality of the maximum likelihood estimate in the independent not identically distributed case, Ann Inst Stat Math, 27, 45-55, 1975 · Zbl 0359.62016 · doi:10.1007/BF02504623
[31] Pitman, J., Exchangeable and partially exchangeable random partitions, Probab Theory Relat Fields, 102, 2, 145-158, 1995 · Zbl 0821.60047 · doi:10.1007/BF01213386
[32] Pitman, J., Probabilistic bounds on the coefficients of polynomials with only real zeros, J Combin Theory Ser A, 77, 2, 279-303, 1997 · Zbl 0866.60016 · doi:10.1006/jcta.1997.2747
[33] Pitman J (2006) Combinatorial stochastic processes. Lecture notes in mathematics, vol 1875. Springer, Berlin · Zbl 1103.60004
[34] Pitman, J.; Yor, M., The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator, Ann Probab, 25, 2, 855-900, 1997 · Zbl 0880.60076 · doi:10.1214/aop/1024404422
[35] Rényi A (1962) On outstanding values of a sequence of observations. In: Selected papers of A. Rényi, Vol. 3, pp. 50-65, Akadémiai Kiadó, Budapest
[36] Rényi A (1962) Théorie des éléments saillants d’une suite d’observations. Ann Fac Sci Univ Clermont-Ferrand 8(2):7-13 · Zbl 0139.35303
[37] Sevast’yanov BA (1972) Poisson limit law for a scheme of sums of dependent random variables. Theory Probab Appl 17(4):695-699 · Zbl 0299.60024
[38] Sibuya, M., Generalized hypergeometric, digamma and trigamma distributions, Ann Inst Stat Math, 31, 3, 373-390, 1979 · Zbl 0448.62008 · doi:10.1007/BF02480295
[39] Sibuya, M., Prediction in Ewens-Pitman sampling formula and random samples from number partitions, Ann Inst Stat Math, 66, 5, 833-864, 2014 · Zbl 1309.62026 · doi:10.1007/s10463-013-0427-8
[40] Simon, HA, On a class of skew distribution functions, Biometrika, 42, 425-440, 1955 · Zbl 0066.11201 · doi:10.1093/biomet/42.3-4.425
[41] Simon, HA, Some further notes on a class of skew distribution functions, Inf Control, 3, 80-88, 1960 · Zbl 0093.32303 · doi:10.1016/S0019-9958(60)90302-8
[42] Tavaré S, Zeitouni O (2004) Lectures on probability theory and statistics. Lecture notes in mathematics, vol 1837. Springer, Berlin · Zbl 1034.60001
[43] Yamato, H., On the Donnelly-Tavaré-Griffiths formula associated with the coalescent, Commun Stat Theory Methods, 26, 3, 589-599, 1997 · Zbl 1030.62511 · doi:10.1080/03610929708831936
[44] Yamato, H., Poisson approximations for sum of Bernoulli random variables and its application to Ewens sampling formula, J Jpn Stat Soc, 47, 2, 187-195, 2017 · Zbl 1395.62030 · doi:10.14490/jjss.47.187
[45] Yamato, H.; Sibuya, M., Moments of some statistics of Pitman sampling formula, Bull Inform Cybernet, 32, 1, 1-10, 2000 · Zbl 1039.60007 · doi:10.5109/13490
[46] Yamato, H.; Sibuya, M.; Nomachi, T., Ordered sample from two-parameter GEM distribution, Stat Probab Lett, 55, 1, 19-27, 2001 · Zbl 1003.62008 · doi:10.1016/S0167-7152(01)00119-5
[47] Yule, GU, A mathematical theory of evolution based on the conclusions of Dr. J. C. Willis, F.R.S, Philos Trans R Soc Lond Ser B, 213, 21-87, 1925 · doi:10.1098/rstb.1925.0002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.