Kitaoka, Yoshiyuki Arithmetic of quadratic forms. (English) Zbl 0785.11021 Cambridge Tracts in Mathematics. 106. Cambridge: Cambridge University Press. x, 268 p. (1993). This is an introduction to the arithmetic theory of quadratic forms over the rational integers, starting from scratch except for some basic knowledge in algebra and some use of algebraic number theory in the last chapter.Chapter 1 gives a concise introduction to basic notions, Chapter 2 describes reduction theory following Siegel and Blichfeldt’s estimate of Hermite’s constant. Chapter 3 classifies regular quadratic spaces over \(\mathbb{Q}_ p\), Chapter 4 contains a proof of the theorem of Hasse- Minkowski. In Chapter 5 quadratic forms over \(\mathbb{Z}_ p\) are studied, with emphasis on computation of local densities. Chapters 6 and 7 finally concern quadratic forms over \(\mathbb{Z}\): In Chapter 6 representations of lattices by lattices are considered, using approximation theorems and the notions of genus and spinor genus, ending with a proof of the Minkowski- Siegel formula (without proof of the analytic part). In Chapter 7 functorial properties of positive definite quadratic forms are investigated, especially tensor products and scalar extension of positive lattices, describing in textbook form some of the author’s research results in this area.The book ends with “Notes”, which give hints to further results and the literature and which contain a list of unsolved problems (10 for Chapter 6, 14 for Chapter 7) with some ideas how to handle them. Problem 1 of the Notes to Chapter 7 has a partial answer by J.-F. Burnol [C. R. Acad. Sci., Paris, Sér. I 312, 367-368 (1991; Zbl 0714.11035)], who uses Rogers’ bound to improve the bound 43 to 45.This is a well-written textbook with many new aspects and recent results. It can be recommended very much for courses and seminars and for self- study. Reviewer: M.Peters (Münster) Cited in 3 ReviewsCited in 124 Documents MSC: 11E12 Quadratic forms over global rings and fields 11-01 Introductory exposition (textbooks, tutorial papers, etc.) pertaining to number theory 11E08 Quadratic forms over local rings and fields 11E10 Forms over real fields 11E88 Quadratic spaces; Clifford algebras Keywords:Hasse-Minkowski theorem; arithmetic theory of quadratic forms; reduction theory; regular quadratic spaces; computation of local densities; representations of lattices by lattices; approximation theorems; genus; spinor genus; Minkowski-Siegel formula; tensor products; scalar extension of positive lattices; list of unsolved problems Citations:Zbl 0714.11035 PDF BibTeX XML Cite \textit{Y. Kitaoka}, Arithmetic of quadratic forms. Cambridge: Cambridge University Press (1993; Zbl 0785.11021) OpenURL