×

Some remarks on the moduli space of principally polarized abelian varieties with level (2,4)-structure. (English) Zbl 0785.14026

Let \(A_ g(n,2n)\) be the quotient space of the Siegel upper half-space of degree \(g\), \(H_ g\) by the congruence subgroup \(\Gamma(n,2n)\). This is the moduli space of principally polarized abelian varieties with level \((n,2n)\) structure. If \(n \geq 2\) there is a holomorphic map \(\varphi_ n\) from \(A_ g(n,2n)\) to \(\mathbb{P}^ N\), \(N=n-1\), defined by the evaluation at 0 of the theta functions \(\theta {a \brack 0}(n \tau, nz)\), \(a \in (n^{-1} \mathbb{Z}/ \mathbb{Z})^ g\).
At the moment in which this paper was accepted for the publication it was known that \(\varphi_ n\) is an immersion for all \(n \geq 4\) [see D. Mumford, C.I.M.E., \(3^ 0\) Ciclo Varenna, 1969 Quest. Algebraic Varieties, 29-100 (1970; Zbl 0198.258)] and \(\varphi_ 3\) is injective [see Ch. Birkenhake and H. Lange, J. Reine Angew. Math. 407, 167-177 (1990; Zbl 0727.14025)]. – In this paper the author proves the injectivity of the map \(\varphi_ 2\) on the set of hyperelliptic points for all \(g\); this implies the generic injectivity of the map. Moreover he also shows that \(\varphi_ 2\) is injective for \(g=3\). The reviewer has to mention that he proved the injectivity of \(\varphi_ 2\) for all \(g\), only after that this paper was accepted for publication [see the reviewer, “Moduli space of ppav with level 2 (theta) structure and reducible points”, Am. J. Math. 116 (1994)].

MSC:

14K25 Theta functions and abelian varieties
11F46 Siegel modular groups; Siegel and Hilbert-Siegel modular and automorphic forms

References:

[1] H. Cartan , Fonctions automorphes, Seminaire E.N.S . 1957/1958. · Zbl 0101.05601
[2] C.H. Clemens and P.A. Griffith , The intermediate Jacobian of the cubic threefold , Ann. of Math. 95 (1972), 281-356. · Zbl 0214.48302 · doi:10.2307/1970801
[3] B Van Geemen , Siegel modular forms vanishing on the moduli space of curves , Inv. Math. 78 (1984), 329-349. · Zbl 0568.14015 · doi:10.1007/BF01388598
[4] B. Van Geemen , The Schottky problem and moduli spaces of Kummer varieties , Thesis, Utrecht, Netherland, 1985. · Zbl 0592.14037
[5] B. Van Geemen and G. Van Der Geer , Kummer varieties and the moduli spaces of abelian varieties , Amer. J. Math. 108 (1986), 615-642. · Zbl 0612.14044 · doi:10.2307/2374657
[6] J.P. Glass , Theta constants of genus three . Compositio Math. 40 (1980), 123-137. · Zbl 0385.14011
[7] J. Igusa , On the graded ring of theta constants , Amer. J. Math. 86 (1964), 219-246. · Zbl 0146.31703 · doi:10.2307/2373041
[8] J. Igusa , Theta functions, Grund, Math. Wiss. 194 , Springer-Verlag, 1972. · Zbl 0251.14016
[9] J. Igusa , On the variety associated with the ring of Thetanullwerte , Amer. J. Math. 103 (1981). · Zbl 0463.14015 · doi:10.2307/2374221
[10] D. Mumford , Introduction to algebraic geometry, Lecture Notes , Harvard Univ. 1967.
[11] D. Mumford , Varieties defined by quadratic equations, Questioni sulle varieta algebraiche . Corsi dal C.I.M.E. Edizioni Cremonese Roma, 1969. · Zbl 0198.25801
[12] D. Mumford , Abelian varieties, Tata studies in Math . Oxford Univ. Press, 1969. · Zbl 0223.14022
[13] D. Mumford and J. Fogarty , Geometric invariant theory, Ergebnisse der Math. 34 , Springer-Verlag, 1982. · Zbl 0504.14008
[14] D. Mumford , Lectures on theta II , Progr. in Math. 43 Birkhäuser (1984). · Zbl 0549.14014 · doi:10.1007/978-0-8176-4578-6
[15] H. Rauch and H. Farkas , Theta functions with applications to Riemann surfaces , Williams and Wilkins, 1974. · Zbl 0292.30015
[16] R. Sasaki , Modular forms vanishing at the reducible points of the Siegel upper-half space , J. für die reine angew. Math. 345 (1983), 111-123. · Zbl 0513.10027 · doi:10.1515/crll.1983.345.111
[17] R. Sasaki , Moduli space of hyperelliptic period matrices with level 2 structure , to appear. · Zbl 0815.14031 · doi:10.1007/BF01200443
[18] T. Sekiguchi , On the cubics defining abelian varieties , J. Math. Soc. Japan 30 (1978), 703-721. · Zbl 0387.14008 · doi:10.2969/jmsj/03040703
[19] A. Seyama , A characterization of reducible abelian varieties , to appear. · Zbl 0539.14023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.