zbMATH — the first resource for mathematics

Fundamental solutions for hypoelliptic differential operators depending analytically on a parameter. (English) Zbl 0785.35008
Summary: Let \(P(\lambda,D)=\sum_{| \alpha | \leq m} a_ \alpha (\lambda) D^ \alpha\) be a differential operator with constant coefficients \(a_ \alpha\) depending analytically on a parameter \(\lambda\). Assume that each \(P(\lambda,D)\) is hypoelliptic and that the strength of \(P(\lambda,D)\) is independent of \(\lambda\). Under this condition we show that there exists a regular fundamental solution of \(P(\lambda,D)\) which also depends analytically on \(\lambda\).

35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
35E05 Fundamental solutions to PDEs and systems of PDEs with constant coefficients
65H10 Numerical computation of solutions to systems of equations
Full Text: DOI
[1] Hans Grauert, On Levi’s problem and the imbedding of real-analytic manifolds, Ann. of Math. (2) 68 (1958), 460 – 472. · Zbl 0108.07804 · doi:10.2307/1970257 · doi.org
[2] Lars Hörmander, On the division of distributions by polynomials, Ark. Mat. 3 (1958), 555 – 568. · Zbl 0131.11903 · doi:10.1007/BF02589517 · doi.org
[3] Lars Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. · Zbl 0271.32001
[4] Lars Hörmander, The analysis of linear partial differential operators. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983. Distribution theory and Fourier analysis. Lars Hörmander, The analysis of linear partial differential operators. II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 257, Springer-Verlag, Berlin, 1983. Differential operators with constant coefficients.
[5] Hans Jarchow, Locally convex spaces, B. G. Teubner, Stuttgart, 1981. Mathematische Leitfäden. [Mathematical Textbooks]. · Zbl 0466.46001
[6] Jürgen Leiterer, Banach coherent analytic Fréchet sheaves, Math. Nachr. 85 (1978), 91 – 109. · Zbl 0409.32017 · doi:10.1002/mana.19780850108 · doi.org
[7] S. Łojasiewicz, Sur le problème de la division, Studia Math. 18 (1959), 87 – 136 (French). · Zbl 0115.10203
[8] I. I. Priwalow, Randeigenschaften analytischer Funktionen, Zweite, unter Redaktion von A. I. Markuschewitsch überarbeitete und ergänzte Auflage. Hochschulbücher für Mathematik, Bd. 25, VEB Deutscher Verlag der Wissenschaften, Berlin, 1956 (German).
[9] François Trèves, Opérateurs différentiels hypoelliptiques, Ann. Inst. Fourier. Grenoble 9 (1959), 1 – 73 (French). · Zbl 0197.36602
[10] -, Un théorème sur les équations aux dérivées partielles à coefficients constants dépendant de paramètres, Bull. Soc. Math. France 90 (1962), 473-486. · Zbl 0113.30901
[11] François Trèves, Fundamental solutions of linear partial differential equations with constant coefficients depending on parameters, Amer. J. Math. 84 (1962), 561 – 577. · Zbl 0121.32201 · doi:10.2307/2372862 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.