×

zbMATH — the first resource for mathematics

On manifolds with nonnegative curvature on totally isotropic 2-planes. (English) Zbl 0785.53034
Let \(\widehat{R}\) be the \(\mathbb{C}\)-linear curvature operator on \(\bigwedge^ 2V^{\mathbb{C}}\cdot K(\sigma) = \langle \widehat{R}(z\wedge w, z\wedge w)\rangle/\| z\wedge w\|^ 2\) is the number which depends only on the complex subspace \(\sigma\) spanned by \(z\) and \(w\). The curvature tensor \(R\) has nonnegative (positive) curvature on totally isotropic 2-planes if \(K(\sigma) \geq 0\) (\(> 0\)) for all totally isotropic (complex) two-dimensional subspaces of \(V^{\mathbb{C}}\).
The main purpose of this paper is to prove that a compact orientable \(2n\)-dimensional Riemannian manifold \((M,g)\) with second Betti number nonzero, nonnegative Riemannian curvature on totally isotropic 2-planes, and satisfying a positivity-type condition at one point, is necessarily Kähler, with second Betti number 1. Using the methods of Siu and Yau the author proves if the positivity condition is satisfied at every point then the manifold is biholomorphic to complex projective space.
Reviewer: N.Bokan (Beograd)

MSC:
53C20 Global Riemannian geometry, including pinching
53C55 Global differential geometry of Hermitian and Kählerian manifolds
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Shigetoshi Bando, On the classification of three-dimensional compact Kaehler manifolds of nonnegative bisectional curvature, J. Differential Geom. 19 (1984), no. 2, 283 – 297. · Zbl 0547.53034
[2] James Eells and Luc Lemaire, Selected topics in harmonic maps, CBMS Regional Conference Series in Mathematics, vol. 50, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1983. · Zbl 0515.58011
[3] Akito Futaki, On compact Kähler manifolds with semipositive bisectional curvature, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 1, 111 – 125. · Zbl 0464.53051
[4] Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, 1978. Pure and Applied Mathematics. · Zbl 0408.14001
[5] A. Grothendieck, Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math. 79 (1957), 121 – 138 (French). · Zbl 0079.17001 · doi:10.2307/2372388 · doi.org
[6] Samuel I. Goldberg and Shoshichi Kobayashi, Holomorphic bisectional curvature, J. Differential Geometry 1 (1967), 225 – 233. · Zbl 0169.53202
[7] Shoshichi Kobayashi, On compact Kähler manifolds with positive definite Ricci tensor, Ann. of Math. (2) 74 (1961), 570 – 574. · Zbl 0107.16002 · doi:10.2307/1970298 · doi.org
[8] S. Kobayashi and K. Nomizu, Foundations of differential geometry. II, Wiley-Interscience, New York, 1969. · Zbl 0175.48504
[9] Shoshichi Kobayashi and Takushiro Ochiai, Characterizations of complex projective spaces and hyperquadrics, J. Math. Kyoto Univ. 13 (1973), 31 – 47. · Zbl 0261.32013
[10] Mario J. Micallef and John Douglas Moore, Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. of Math. (2) 127 (1988), no. 1, 199 – 227. · Zbl 0661.53027 · doi:10.2307/1971420 · doi.org
[11] J. Sacks and K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. of Math. (2) 113 (1981), no. 1, 1 – 24. · Zbl 0462.58014 · doi:10.2307/1971131 · doi.org
[12] Walter Seaman, Orthogonally pinched curvature tensors and applications, Math. Scand. 69 (1991), no. 1, 5 – 14. · Zbl 0759.53030 · doi:10.7146/math.scand.a-12365 · doi.org
[13] Yum Tong Siu, Curvature characterization of hyperquadrics, Duke Math. J. 47 (1980), no. 3, 641 – 654. · Zbl 0468.53054
[14] Yum Tong Siu and Shing Tung Yau, Compact Kähler manifolds of positive bisectional curvature, Invent. Math. 59 (1980), no. 2, 189 – 204. · Zbl 0442.53056 · doi:10.1007/BF01390043 · doi.org
[15] Hung Hsi Wu, The Bochner technique in differential geometry, Math. Rep. 3 (1988), no. 2, i – xii and 289 – 538. · Zbl 0875.58014
[16] Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339 – 411. · Zbl 0369.53059 · doi:10.1002/cpa.3160310304 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.