×

zbMATH — the first resource for mathematics

Convergence of the Godunov scheme for a simplified one-dimensional hydrodynamic model for semiconductor devices. (English) Zbl 0785.76053
Summary: Convergence of approximate solutions derived by the Godunov scheme for a simplified one-dimensional hydrodynamic model for semiconductor devices is established by using the compensated compactness method. A global existence theorem is shown, and a numerical method for the computation of the physical global solution of this model is provided by this approach.

MSC:
76M20 Finite difference methods applied to problems in fluid mechanics
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
78A99 General
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Baccarani, G., Wordeman, M.R.: An investigation of steady-state velocity overshoot effects in Si and GaAs devices. Solid State Electron.28, 404–416 (1985) · doi:10.1016/0038-1101(85)90100-5
[2] Bell, T.E.: The quest for ballistic action. IEEE Spectrum23, 36–38 (1986)
[3] Blotekjer, K.: Transport equations for electrons in two-valley semiconductors. IEEE Trans. Electron DevicesED-17, 38–47 (1970) · doi:10.1109/T-ED.1970.16921
[4] Chen, G.-Q.: Congergence of Lax-Friedrichs scheme for isentropic gas dynamics, III. Acta Math. Sci.6, 75–120 (1986) · Zbl 0643.76086
[5] Chen, G.-Q.: Limit behavior of approximate solutions to conservation laws. In: Multidimensional Hyperbolic Problems and Computations. Glimm, J., Majda, A.J. (eds.), Berlin Heidelberg, New York: Springer 1991, pp. 38–57 · Zbl 0760.35029
[6] Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock-Waves. Interscience, New York: J. Wiley and Sons 1967 · Zbl 0041.11302
[7] Degond, P., Markowich, P.A.: On a one-dimensional steady-state hydrodynamic model for semiconductors. Appl. Math. Letters3(3), 25–29 (1990) · Zbl 0736.35129 · doi:10.1016/0893-9659(90)90130-4
[8] Ding, X., Chen, G.-Q., Lou, P.: Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics, I, II. Acta Math. Sci.5, 415–432, 433–472 (1985) · Zbl 0643.76084
[9] Ding, X., Chen, G.-Q., Lou, P.: Convergence of the fraction step Lax-Friedrichs scheme and Godunov scheme for the isentropic system of gas dynamics. Commun. Math. Phys.121, 63–84 (1989) · Zbl 0689.76022 · doi:10.1007/BF01218624
[10] Ding, X., Chen, G.-Q., Lou, P.: A supplement of the paper Convergence of Lax-Friedrichs scheme for isentropic gas dynamics, II–III. Acta Math. Sci.9, 43–44 (1989) · Zbl 0678.76078
[11] Di Perna, R.J.: Convergence of the viscosity method for isentropic gas dynamics. Commun. Math. Phys.91, 1–30 (1983) · Zbl 0533.76071 · doi:10.1007/BF01206047
[12] Di Perna, R.J.: Convergence of approximate solutions to conservation laws. Arch. Rat. Mech. Anal.82, 27–70 (1983) · Zbl 0519.35054 · doi:10.1007/BF00251724
[13] Evans, L.C.: Weak Convergence Methods for Nonlinear Partial Differential Equations. CBMS Lecture Notes of A.M.S., 1990 · Zbl 0698.35004
[14] Gamba, I.M.: Stationary transonic solutions for a one-dimensional hydrodynamic model for semiconductors. Commun. in P.D.E.17, 553–577 (1992) · Zbl 0748.35049
[15] Gardner, C.L.: Numerical simulation of a steady-state electron shock wave in a submicron semiconductor device. IEEE Transactions on Electron Devices38, 392–398 (1991) · doi:10.1109/16.69922
[16] Gardner, C.L., Jerome, J.M., Rose, Donald J.: Numerical methods for the hydrodynamic device model. IEEE Trans. Computer-Aided Design8, 501–507 (1989) · Zbl 05448063 · doi:10.1109/43.24878
[17] Godunov, S.: A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Mat. Sb.47, 271–360 (1959) · Zbl 0171.46204
[18] Lax, P.D.: Hyperbolic systems of conservation laws and mathematical theory of shock waves. Regional Conference Series in Applied Mathematics, SIAM, Philadelphia11, (1973) · Zbl 0268.35062
[19] Lax, P.D.: Shock waves and entropy. In Contributions to Nonlinear Functional Analysis. Zarantonello, E. (ed.), New York: Academic Press 1971, pp. 603–604
[20] Liu, T.-P.: Initial-Boundary value problems for gas dynamics. Arch. Rat. Mech. Anal.64, 137–168 (1977) · Zbl 0357.35016 · doi:10.1007/BF00280095
[21] Liu, T.-P., Smoller, J.: The vacuum state in isentropic gas dynamics. Adv. Appl. Math.1, 345–359 (1980) · Zbl 0461.76055 · doi:10.1016/0196-8858(80)90016-0
[22] Markowich, P.A., Ringhofer, C., Schmeiser, C.: Semiconductor Equations. Berlin, Heidelberg, New York. Springer 1990 · Zbl 0765.35001
[23] Murat, F.: Compacit√© par compensation. Ann. Scuola Norm. Sup. Pisa Sci. Fis.5, 489–507 (1978) · Zbl 0399.46022
[24] Nishida, T., Smoller, J.: Mixed problem for nonlinear conservation laws. J. Diff. Eqs.23, 244–269 (1977) · Zbl 0336.35067 · doi:10.1016/0022-0396(77)90129-2
[25] Rudan, M., Odeh, F., White, J.: Numerical solution of the hydrodynamic model for onedimensional semiconductor device. COMPEL6, 151–170 (1987)
[26] Smoller, J.: Shock Waves and Reaction-Diffusion Equations. Berlin, Heidelberg, New York: Springer 1983 · Zbl 0508.35002
[27] Takeno, S.: Initial boundary value problems for isentropic gas dynamics. Proceedings of the Royal society of Edinburgh120A, 1–23 (1992) · Zbl 0745.76056
[28] Tartar, L.: Compensated compactness and application to partial differential equations. In: Research Notes in Math., Nonlinear Analysis and Mechanics. Knops, R.J. (ed.), Vol. 4, New York: Pitman Press 1979 · Zbl 0437.35004
[29] Thomann, E., Odeh, F.: Remarks on the well-posedness of the hydrodynamic model for semiconductor devices. In: Proceedings of The Sixth International Nasecde Conference. Miller, J.J.H. (ed.), Boole Press Ltd., 1989 · Zbl 0732.35095
[30] Wang, J.H.: A nonhomogeneous system of equations of nonisentropic gas dynamics. Carasso, C., Raviart, P.-A., Serre, D. (eds.) Nonlinear Hyperbolic Problems. Berlin, Heidelberg, New York: Springer 1986
[31] Zhang, B.: On a local existence theorem for a one-dimensional hydrodynamic model of semiconductor devices. Technical Report No. 195, Center for Applied Mathematics, Purdue University 1992. To appear in SIAM J. Math. Anal.
[32] Zhang, B.: On the viscosity solution for a one-dimensional hyrdodynamic model for semiconductor devices. Technical Report No. 196, Center for Applied Mathematics, Purdue University, 1992, submitted to Math. Meth. Appl. Sci.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.