zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Configurations and graphs. (English) Zbl 0786.05088
The author gives a short survey on some relations between graphs and configurations. In particular, the analogy between configurations and regular bipartite graphs and certain graph-theoretic problems related to configurations are discussed.

05C99Graph theory
05B30Other designs, configurations
Full Text: DOI
[1] Baker, R. D.: Elliptic semiplanes I: Existence and classification. Proc. 8th S.E. Conf. on combinatorics, graph theory and computing, 61-73 (1977)
[2] V. Batagelj (talk in Malta, June 1990).
[3] Bermond, J. -C.; Bond, J.; Sotteau, D.: On regular packings and coverings. Ann. discrete math. 34, 81-100 (1987) · Zbl 0644.05031
[4] Biggs, N. L.; Ito, T.: Graphs with even girth and small excess. Math. proc. Cambridge philos. Soc. 88, 1-10 (1980) · Zbl 0441.05043
[5] Dipaola, J. W.; Gropp, H.: Hyperbolic graphs from hyperbolic planes. Congr. numer. 68, 23-44 (1989)
[6] Dipaola, J. W.; Gropp, H.: Symmetric configurations without blocking sets. Mitteilungen math. Sem. giessen 201, 49-54 (1991) · Zbl 0741.51012
[7] Dorwart, H. L.; Grünbaum, B.: Are these figures oxymora?. Math. mag. 65, 158-169 (1992) · Zbl 0781.05010
[8] Gropp, H.: Configurations and the tutte conjecture. Ars combin. 29A, 171-177 (1990) · Zbl 0739.05016
[9] Gropp, H.: On the existence and non-existence of configurations nk. J. combin. Inform. systems sci. 15, 34-48 (1990) · Zbl 0757.51003
[10] Gropp, H.: Blocking sets in configurations n3. Mitteilungen math. Sem. giessen 201, 59-72 (1991) · Zbl 0742.51009
[11] H. Gropp, Non-symmetric configurations with deficiencies 1 and 2, Ann. Discrete Math., to appear. · Zbl 0767.05034
[12] H. Gropp, Non-symmetric configurations with natural index, Discrete Math., to appear. · Zbl 0791.05012
[13] H. Gropp, The construction of all configurations (124, 163), Ann. Discrete Math., to appear. · Zbl 0767.05035
[14] Gropp, H.: On the history of configurations. Conference San Sebastian (September 1990) · Zbl 0757.51003
[15] Gropp, H.: Enumeration of regular graphs 100 years ago. Discrete math. 101, 73-85 (1992) · Zbl 0759.05052
[16] Martinetti, V.: Sulle configurazioni piane ${\mu}$3. Ann. mat. Pura appl. 15, 1-26 (1887) · Zbl 19.0587.02
[17] O’keefe, M.; Wong, P. K.: The smallest graph of girth 6 and valency 7. J. graph theory 5, 79-85 (1981) · Zbl 0448.05041
[18] De Vries, J.: Over vlakke configuraties waarin elk punt met twee lijnen incident is, verslagen en mededeelingen der koninklijke akademie voor wetenschappen. Afdeeling natuurkunde 6, No. 3, 382-407 (1889)
[19] De Vries, J.: Sur LES configurations planes dont chaque point supporte deux droites. Rend. circ. Mat. Palermo 5, 221-226 (1891) · Zbl 23.0560.01