Simultaneous rational approximations and related diophantine equations. (English) Zbl 0786.11040

Verf. untersucht die effektive simultane Approximation algebraischer Zahlen des Typs \(t_ 1^ \nu,\dots, t_ m^ \nu\) bei rationalen \(t_ 1,\dots,t_ m\), \(\nu\). Liegen \(t_ 1,\dots,t_ m\) bezüglich ihres Hauptnenners genügend nahe bei 1, so wird mit effektiv angebbaren \(c,\lambda\in\mathbb{R}_ +\) eine Ungleichung der Form \[ \max_{1\leq i\leq m} | qt_ i^ \nu- p_ i|> cq^{-\lambda} \] für alle ganzen \(q>0\), \(p_ 1,\dots,p_ m\) gewonnen.
Verf. beweist sodann speziell \(\max(| q\sqrt 2-p_ 1|, | q\sqrt 3-p_ 2|)> 10^{-7} q^{-0,913}\) und leitet daraus ab, daß \((\pm 1,\pm 1,0)\) die einzigen Lösungen des simultanen Gleichungssystems \(x^ 2-2z^ 2=1\), \(y^ 2-3z^ 2=1\) sind.
Die Beweismethode ist derjenigen von A. Baker [Proc. Camb. Philos. Soc. 63, 693-702 (1967; Zbl 0166.055)] verwandt; ähnliche Ergebnisse hatten 1970 N. I. Feldman bzw. C. F. Osgood publiziert.


11J68 Approximation to algebraic numbers
11J13 Simultaneous homogeneous approximation, linear forms
11D09 Quadratic and bilinear Diophantine equations


Zbl 0166.055
Full Text: DOI


[1] Baker, Transcendental Number Theory (1975)
[2] Baker, Proc. Cambridge Philos. Soc. 63 pp 693– (1967)
[3] DOI: 10.1093/qmath/15.1.375 · Zbl 0222.10036
[4] DOI: 10.1112/plms/s3-14.3.385 · Zbl 0131.29102
[5] Fel’dman, Math. Notes 7 pp 343– (1970) · Zbl 0212.39402
[6] DOI: 10.1007/BF02392334 · Zbl 0205.06702
[7] Roth, Mathematika 2 pp 1– (1955)
[8] Osgood, Proc. Cambridge Philos. Soc. 67 pp 75– (1970)
[9] Fel’dman, Math. Notes 8 pp 674– (1970) · Zbl 0211.37603
[10] Mathematika pp 168–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.