zbMATH — the first resource for mathematics

Zero-dimensional groups and factorization of homomorphisms with respect to weight and dimension. (English. Russian original) Zbl 0786.22003
Sib. Math. J. 32, No. 3, 477-484 (1991); translation from Sib. Mat. Zh. 32, No. 3(187), 151-159 (1991).
The main result is: Every topological group \(G\) is a factor group of some topological group of dimension zero in the sense of the small inductive dimension which has the same weight as \(G\).
In the second part of the paper it is shown that under certain restrictions on a topological group \(G\) for every continuous homomorphism \(f: G\to H\) there exist a topological group \(G^*\), \(\dim G^*\leq \dim G\) and continuous homomorphisms \(h_ 1: G^*\to H\), \(h_ 2: G\to G^*\), such that \(f=h_ 1 h_ 2\).

22A05 Structure of general topological groups
54H11 Topological groups (topological aspects)
Full Text: DOI
[1] A. V. Arkhangel’skii, ?Any topological group is a quotient group of a zero-dimensional topological group,? Dokl. Akad. Nauk SSSR,285, No. 5, 1037-1040 (1981).
[2] A. V. Arkhangel’skii, ?Classes of topological groups,? Usp. Mat. Nauk,36, No. 3, 127-146 (1981).
[3] V. K. Bel’nov, ?On the dimension of free topological groups,? in: Abstracts, IVth Tiraspol Symp. General Topology and Applications, 1979 [in Russian], Shtiintsa, Kishinev (1979), pp. 14-15.
[4] M. M. Choban, ?On some questions of the theory of topological groups,? in: General Algebra and Discrete Geometry [in Russian], Shtiintsa, Kishinev (1980), pp. 120-135.
[5] M. G. Tkachenko, ?On zero-dimensional topological groups,? in: Proc. Leningrad International Topology Conf. [in Russian], Nauka, Leningrad (1983), pp. 113-118. · Zbl 0599.22005
[6] V. G. Pestov, ?Homomorphisms of topological groups do not factorize with respect to weight and dimension,? Mat. Zametki,41, No. 2, 217-225 (1987).
[7] E. C. Nummela, ?Uniform free topological groups and Samuel compactifications,? Topology Appl.,13, No. 1, 77-83 (1982). · Zbl 0471.22001 · doi:10.1016/0166-8641(82)90009-8
[8] V. G. Pestov, ?Neighborhoods of the identity in free topological groups,? Vestn. Mosk. Gos. Univ., Ser. 1, Mat. Mekh., No. 3, 8-10 (1985). · Zbl 0576.22001
[9] O. V. Sipacheva, ?Zero-dimensionality and completeness in free topological groups,? Serdika,15, 119-154 (1989).
[10] A. V. Arkhangel’skii, ?On maps connected with topological groups,? Dokl. Akad. Nauk SSSR,181, No. 6, 1303-1306 (1968).
[11] D. B. Shakhmatov, ?Factorization theorems for topological groups,? in: Scientific-Research Seminar on General Topology. Sessions of Spring Semester, 1985/86 School Year, Vestn. Mosk. Gos. Univ., Ser. 1, Mat. Mekh., No. 4, 112-114-(1988).
[12] M. G. Tka?enko, ?On topologies of free groups,? Czech. Mat. J.,34, 541-551 (1984).
[13] I. I. Guran, ?On topological groups close to being eventually compact,? Dokl. Akad. Nauk SSSR,256, No. 6, 1035-1037 (1981).
[14] V. V. Uspenskii, ?A topological group generated by a Lindelöf ?-space possesses the Suslin property,? Dokl. Akad. Nauk SSSR,265, No. 4, 823-826 (1982).
[15] M. Katetov, ?A theorem on the Lebesgue dimension,? ?asopis Pro P?st. Mat. Fys.,75, No. 2, 79-87 (1950).
[16] Yu. M. Smirnov, ?On the dimension of proximity spaces,? Mat. Sb.,38, 283-302 (1956). · Zbl 0070.18002
[17] M. G. Tka?enko, ?Factorization theorems for topological groups and their applications,? Topology Appl.,38, No. 1, 21-37 (1991). · Zbl 0722.54039 · doi:10.1016/0166-8641(91)90038-N
[18] P. S. Aleksandrov and B. A. Pasynkov, Introduction to Dimension Theory [in Russian], Nauka, Moscow (1973).
[19] R. Engelking, Dimension Theory, PWN, Warsaw (1978).
[20] M. G. Tkachenko, ?Generalization of the Comfort-Ross theorem,? Ukr. Mat. Zh.,41, No. 3, 377-382 (1989). · Zbl 0698.22005
[21] D. A. Raikov, ?On completion of topological groups,? Izv. Akad. Nauk SSSR,10, 513-528 (1946). · Zbl 0061.04206
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.