×

zbMATH — the first resource for mathematics

On a uniform law of the iterated logarithm for sums mod 1 and Benford’s law. (English) Zbl 0786.60034
Reprinted from Lit. Mat. Sb. 31, No. 1, 205–217 (1991; Zbl 0746.60034).

MSC:
60F15 Strong limit theorems
11K06 General theory of distribution modulo \(1\)
11K16 Normal numbers, radix expansions, Pisot numbers, Salem numbers, good lattice points, etc.
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] N. H. Bingham, ?Variants on the law of the iterated logarithm,? Bull. London Math. Soc.,18, 433-477 (1986). · Zbl 0633.60042
[2] J. W. S. Cassels, ?An extension of the law of the iterated logarithm,? Proc. Cambridge Philos. Soc.,47, 55-64 (1951). · Zbl 0042.13704
[3] K. L. Chung, ?An estimate concerning the Kolmogorov limit distribution,? Trans. Am. Math. Soc.,67, 36-50 (1949). · Zbl 0034.22602
[4] M. Cs?rg? and P. R?v?sz, Strong Approximations in Probability and Statistics, Budapest: Akademiai Kiado (1981).
[5] V. A. Egorov, ?Some limit theorems for m-dependent random variables,? Liet. Mat. Rinkinys,10, 51-59 (1970). · Zbl 0213.20201
[6] A. S. Fainleib, ?A generalization of Esseen’s inequality and an application of it to probabilistic number theory,? Izv. Akad: Nauk SSSR, Ser. Mat.,32, 859-879 (1968).
[7] L. Heinrich, ?A method for the derivation of limit theorems for sums of m-dependent random variables,? Z. Wahrsch. Verw. Gebiete,60, 501-515 (1982). ISSN 0044-3719. · Zbl 0492.60028
[8] L. Heinrich, ?Nonuniform estimates, moderate and large deviations in the central limit theorem for m-dependent random variables,? Math. Nachr.,121, 107-121 (1985). ISSN 0025-584X. · Zbl 0572.60031
[9] V. M. Kruglov, ?The parametric law of the iterated logarithm,? Teor. Veroyatn. Primen.,32, 73-81 (1987). ISSN 0040-361X. · Zbl 0623.60043
[10] L. Kuipers and H. Niederreiter Uniform Distribution of Sequences, Wiley, New York (1974). · Zbl 0281.10001
[11] R. Lapinskas, ?A law of iterated logarithm for m-dependent random variables,? Liet. Mat. Rinkinys,27, 279-284 (1987). ISSN 0132-2818. · Zbl 0633.60043
[12] M. P. L?vy, ?L’addition des variables al?atoires d?finies sur une circonference,? Bull. Soc. Math. France,67, 1-41 (1939).
[13] M. Loeve, Probability Theory. I. Springer-Verlag, Berlin-Heidelberg-New York (1977). · Zbl 0359.60001
[14] A. I. Martikainen, Generalizations of the Law of the Iterated Logarithm II Probability Theory and Mathematical Statistics. Vol. II (Vilnius 1985). pp. 235-251. VNU Sci. Press Utrecht, 1987.
[15] V. V. Petrov, Sums of Independent Random Variables, Academic Press (1985). · Zbl 0267.60055
[16] W. Philipp, Mixing sequences of random variables and probabilistic number theory,? AMS Mem., No. 114, 1-102 (1987).
[17] H. Robbins, ?On the equidistribution of sums of independent random variables,? Proc. Am. Math. Soc.,4, 786-799 (1957). · Zbl 0053.26704
[18] P. Schatte, ?On the asymptotic uniform distribution of sums reduced mod 1,? Math. Nachr.,115, 275-281 (1985). ISSN 0025-584X. · Zbl 0557.60008
[19] P. Scbutte, ?On the asymptotic uniform distribution of the n-fold convolution of a lattice distribution,? Math. Nachr.,128, 233-241 (1986). ISSN 0025-584X. · Zbl 0617.60019
[20] P. Schatte, ?On a law of the iterated logarithm for sums mod 1 with application to Benford’s law,? Probab. Th. Rel. Fields. Pt.77, 167-178 (1988). · Zbl 0619.60032
[21] P. Scbatte, ?On mantissa distributions in computing and Benford’s law,? J. Inf. Process. Cybern.,24, 443-455 (1988). · Zbl 0662.65040
[22] V. V. Shergin, ?On the speed of convergence in the central limit theorem for m-dependent random variables,? Teor. Veroyatn. Primen.,24, 781-794 (1979). ISSN 0040-361X. · Zbl 0437.60018
[23] G. R. Shorsck and J. A. Wellner, Empirical Processes with Applications to Statistics, Wiley, New York (1986).
[24] R. Yokoysma, ?The law of the iterated logarithm for empirical distributions for m-dependent random variables,? Yokohama Math. J.,24, 79-91 (1976).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.