Senf, Torsten On one-dimensional stochastic differential equations without drift and with time-dependent diffusion coefficients. (English) Zbl 0786.60077 Stochastics Stochastics Rep. 43, No. 3-4, 199-220 (1993). The one-dimensional stochastic differential equation \[ X_ t=x_ 0+\int^ t_ 0b(s,X_ s)dB_ s \tag{1} \] is considered where \(B\) is Brownian motion and \(b:[0,\infty) \times \mathbb{R} \to \mathbb{R}\) is a measurable function. It is shown that under the conditions(i) \(\int^ t_ 0 \int^ m_{-m}b^ 2(s,y)dyds<\infty\) for all \(t \geq 0\), \(m\in\mathbb{N},\)(ii) \(\int^ t_ 0\int^ m_{-m}b^{-2}(s,y)dyds<\infty\) for all \(t\geq 0\), \(m\in\mathbb{N}\),for each \(x_ 0 \in \mathbb{R}\) there exists a solution of (1) which may explode. If moreover the condition(iii) Lebesgue measure of \(\{x \in \mathbb{R}:\sup_{t \leq m}b^ 2(t,x)<\infty\}\) for all \(m \in \mathbb{N}\)is satisfied, then for each \(x_ 0 \in \mathbb{R}\) there exists a nonexploding solution of (1). Reviewer: D.Jarušková (Praha) Cited in 1 ReviewCited in 6 Documents MSC: 60H10 Stochastic ordinary differential equations (aspects of stochastic analysis) 60J65 Brownian motion 60H05 Stochastic integrals 60B10 Convergence of probability measures Keywords:continuous local martingales; weak convergence; stochastic differential equation; Brownian motion PDF BibTeX XML Cite \textit{T. Senf}, Stochastics Stochastics Rep. 43, No. 3--4, 199--220 (1993; Zbl 0786.60077) Full Text: DOI