zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Multiple objective linear fractional programming. -- A fuzzy set theoretic approach. (English) Zbl 0786.90088
Summary: A method for optimizing a multiobjective linear fractional programming problem is developed which yields always an efficient solution.

MSC:
90C70Fuzzy programming
WorldCat.org
Full Text: DOI
References:
[1] Hwang, C. L.; Masud, A. S. M.: Multiple objective decision making -- methods and applications. (1979) · Zbl 0397.90001
[2] Hwang, C. L.; Yoom, K.: Multiple attribute decision making -- methods and applications. (1981)
[3] Forman, E.; Saaty, T. L.: Expert choice software package for IBM PC. (1983--1990)
[4] Choo, E. U.; Atkins, D. R.: Bicriteria linear fractional programming. J. optimization theory and appl. 36, 203-222 (1982) · Zbl 0452.90076
[5] Zimmermann, H. -J.: Fuzzy sets, decesion making and expert systems. (1987)
[6] Nykowski, I.; Zolkiewski, Z.: A compromise procedure for the multiple objective fractional programming problem. European J. Oper. res. 19, 91-97 (1985) · Zbl 0555.90098
[7] Buckley, J. J.: Fuzzy programming and multicriteria decision making. Optimization models using fuzzy sets and possibility theory (1987) · Zbl 0636.90086
[8] Kornbluth, J. S. H.; Stener, R. E.: Goal programming with linear fractional criteria. European J. Oper. res. 8, 58-65 (1981) · Zbl 0486.90077
[9] Kornbluth, J. S. H.; Steuer, R. E.: Multiple objective linear fractional programming. Management sci. 27, 1024-1039 (1981) · Zbl 0467.90064
[10] Zadeh, L. A.: The concept of a linguistic variable and its application to approximate reasoning, part I, II, III. Inform. sci. 9, 43-80 (1975) · Zbl 0404.68075
[11] Luhandjula, M. K.: Compensatory operators in fuzzy linear programming with multiple objectives. Fuzzy sets and systems 8, 245-252 (1982) · Zbl 0492.90076
[12] Luhandjula, M. K.: Fuzzy approaches for multiple objective linear fractional optimization. Fuzzy sets and systems 13, 11-23 (1984) · Zbl 0546.90094
[13] Sakawa, M.; Yano, H.: An interactive fuzzy satisfying method for multiobjective linear fractional programming problems. Fuzzy sets and systems 28, 129-144 (1988) · Zbl 0654.90089
[14] Tiwari, R. N.; Dharmar, S.; Rao, J. R.: Fuzzy goal programming -- an additive model. Fuzzy sets and systems 24, 27 (1987) · Zbl 0627.90073
[15] Schaible, S.: Fractional programming -- some recent developments. J. inform. And optimization sci. 10, 1-14 (1989) · Zbl 0676.90080
[16] Saaty, T. L.: A scale method for priorities in hierarchical structures. J. math. Psychology 15, 234-281 (1977) · Zbl 0372.62084
[17] Kuz’min, V. B.: A parametric approach to description of linguistic values of variables and hedges. Fuzzy sets and systems 6, 27-41 (1981)