Lieb, Elliott H.; Loss, Michael Fluxes, Laplacians, and Kasteleyn’s theorem. (English) Zbl 0787.05083 Duke Math. J. 71, No. 2, 337-363 (1993). The authors consider some problems in graph theory arising from the problem of electrons in a crystal lattice interacting with a magnetic field. This leads to the consideration of matrices whose elements are of the form \(t_{xy}=| t_{xy}| e^{i\theta(x,y)}\). Various theorems about the determinants and eigenvalues of such matrices are proved, notably Kasteleyn’s theorem that enables us to enumerate the dimer coverings of any planar graph. Reviewer: H.N.V.Temperley (Langport) Cited in 1 ReviewCited in 33 Documents MSC: 05C90 Applications of graph theory 82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics 05C50 Graphs and linear algebra (matrices, eigenvalues, etc.) 05C10 Planar graphs; geometric and topological aspects of graph theory 81V10 Electromagnetic interaction; quantum electrodynamics 05C05 Trees 05B40 Combinatorial aspects of packing and covering 05B20 Combinatorial aspects of matrices (incidence, Hadamard, etc.) Keywords:Laplacians; crystal lattice; magnetic field; matrices; determinants; eigenvalues; Kasteleyn’s theorem; dimer coverings; planar graph × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] I. Affleck and J. B. Marston, Large \(n\)-limit of the Heisenberg-Hubbard model: Implications for high-\(T_c\) superconductors , Phys. Rev. B 37 (1988), 3774-3777. [2] A. Barelli, J. Bellissard, and R. Rammal, Spectrum of \(2\)D Bloch electrons in a periodic magnetic field: algebraic approach , J. Physique 51 (1990), no. 19, 2167-2185. · doi:10.1051/jphys:0199000510190216700 [3] 1 J. Bellissard and R. Rammal, An algebraic semicalssical approach to Bloch electrons in a magnetic field , J. Physique 51 (1990), 1803-1830. · doi:10.1051/jphys:0199000510190215300 [4] 2 J. Bellissard and R. Rammal, Ground state of the Fermi gas on \(2\)D lattices with a magnetic field , J. Physique 51 (1990), no. 19, 2153-2165. · doi:10.1051/jphys:0199000510190215300 [5] 3 J. Bellissard and R. Rammal, Ground state of the Fermi gas on \(2D\) lattices with a magnetic field: new exact results , Europhys. Lett. 13 (1990), 205-210. [6] 1 U. Brandt and R. Schmidt, Exact results for the distribution of the \(f\)-level ground state occupation in the spinless Falicov-Kimball model , Z. Phys. B 63 (1986), 45-53. [7] 2 U. Brandt and R. Schmidt, Ground state properties of a spinless Falicov-Kimball model; Additional features , Z. Phys. B 67 (1987), 43-51. [8] P. A. Deift and C. Tomei, On the determinant of the adjacency matrix for a planar sublattice , J. Combin. Theory Ser. B 35 (1983), no. 3, 278-289. · Zbl 0532.05045 · doi:10.1016/0095-8956(83)90054-0 [9] L. M. Falicov and J. C. Kimball, Simple model for semicoductor-metal transitions: \(SmB_6\) and transition metal oxides , Phys. Rev. Lett. 22 (1969), 997-999. [10] D. R. Hofstadter, Energy levels and wave functions of Bloch electrons in a rational or irrational magnetic field , Phys. Rev. B 14 (1976), 2239-2249. [11] Y. Hasegawa, P. Lederer, T. M. Rice, and P. B. Wiegmann, Theory of electronic diamagnetism in two-dimensional lattices , Phys. Rev. Lett. 63 (1989), 907-910. [12] 1 P. G. Harper, Single band motion of conduction electrons in a uniform magnetic field , Proc. Phys. Soc. A 68 (1955), 874-878. · Zbl 0065.23708 · doi:10.1088/0370-1298/68/10/304 [13] 2 P. G. Harper, The general motion of conduction electrons in a uniform magnetic field, with application to the diamagnetism of metals , Proc. Phys. Soc. A 68 (1955), 879-892. · Zbl 0065.23707 · doi:10.1088/0370-1298/68/10/305 [14] G. Kotliar, Resonating valence bonds and \(d\)-wave superconductivity , Phys. Rev. B 37 (1988), 3664-3666. [15] 1 P. W. Kasteleyn, The statistics of dimers on a lattice I. The number of dimer arrangements on a quadratic lattice , Physica 27 (1961), 1209-1225. · Zbl 1244.82014 [16] 2 P. W. Kasteleyn, Graph theory and crystal physics , Graph Theory and Theoretical Physics ed. F. Harary, Academic Press, London, 1967, pp. 43-110. · Zbl 0205.28402 [17] T. Kennedy and E. H. Lieb, An itinerant electron model with crystalline or magnetic long range order , Phys. A 138 (1986), no. 1-2, 320-358. · Zbl 1002.82508 · doi:10.1016/0378-4371(86)90188-3 [18] E. H. Lieb, The flux-phase problem on planar lattices , Helv. Phys. Acta 65 (1992), no. 2-3, 247-255. [19] 1 D. S. Rokhsar, Quadratic quantum antiferromagnets in the fermionic large-\(N\) limit , Phys. Rev. B (3) 42 (1990), no. 4, 2526-2531. · Zbl 1243.82024 · doi:10.1103/PhysRevB.42.2526 [20] 2 D. S. Rokhsar, Solitons in chiral-spin liquids , Phys. Rev. Lett. 65 (1990), 1506-1509. [21] H. N. V. Temperley and M. E. Fisher, Dimer problem in statistical mechanics-An exact result , Philos. Mag. (8) 6 (1961), 1061-1063. · Zbl 0126.25102 · doi:10.1080/14786436108243366 [22] P. B. Wiegmann, Towards a gauge theory of strongly correlated electronic systems , Physica 153C (1988), 103-108. [23] X. G. Wen, F. Wilczek, and A. Zee, Chiral spin states and superconductivity , Phys. Rev. B 39 (1989), 11413-11423. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.