×

The admissible dual of \(SL(N)\). I. (English) Zbl 0787.22017

For a non-Archimedean local field \(F\) and a reductive group \(G\) over \(F\) the determination of the supercuspidal representations of \(G\) is a delicate matter. Consider the groups \(G=GL_ n(F)\) and \(G'= SL_ n(F)\). Any irreducible smooth \(G\)-representation restricts to a multiplicity free finite direct sum of smooth irreducible \(G'\)-representations and any two \(G\)-representations having in their restrictions a \(G'\)- representation in common, differ by a character of the determinant. Furthermore supercuspidal representations restrict to supercuspidals.
Using these properties of the restriction and their theory of simple types of \(GL_ n(F)\) the authors are able to prove that any supercuspidal representation of \(SL_ n(F)\) is induced from the norm-1 group of a principal order in the algebra \(\text{Mat}_ n(F)\). Specializing to tamely ramified representations (=representations generated by Iwahori fixed vectors) they show that tamely ramified representations have tamely ramified subquotients.

MSC:

22E50 Representations of Lie and linear algebraic groups over local fields

References:

[1] I. N. BERNSTEIN and A. V. ZELEVINSKY , Induced Representations of Reductive p-Adic Groups (Ann. Scient. Ec. Norm. Sup., 4e Sér., Vol. 10, pp. 441-472). Numdam | MR 58 #28310 | Zbl 0412.22015 · Zbl 0412.22015
[2] A. BOREL , Admissible Representations of a Semisimple Group Over a Local Field with Vectors Fixed Under an Iwahori Subgroup (Invent. Math., Vol. 35, 1976 , pp. 233-259). MR 56 #3196 | Zbl 0334.22012 · Zbl 0334.22012 · doi:10.1007/BF01390139
[3] C. J. BUSHNELL , Hereditary orders, Gauss Sums and Supercuspidal Representations of GLN (J. reine angew. Math., Vol. 375-376, 1987 , pp. 184-210). MR 88e:22024 | Zbl 0601.12025 · Zbl 0601.12025 · doi:10.1515/crll.1987.375-376.184
[4] C. J. BUSHNELL and A. FRÖHLICH , Non-Abelian Congruence Gauss Sums and p-Adic Simple Algebras (Proc. London Math. Soc., (3), Vol. 50, 1985 , pp. 207-264). Zbl 0558.12007 · Zbl 0558.12007 · doi:10.1112/plms/s3-50.2.207
[5] C. J. BUSHNELL and P. C. KUTZKO , The Admissible Dual of GL (N) via Compact Open Subgroups (Ann. Math. Studies, No. 129, Princeton University Press, 1992 ). MR 94h:22007 | Zbl 0787.22016 · Zbl 0787.22016
[6] H. CARAYOL , Représentations cuspidales du groupe linéaire (Ann. Scient. Éc. Norm. Sup., 4e Sér., Vol. 17, 1984 , pp. 191-225). Numdam | MR 86f:22019 | Zbl 0549.22009 · Zbl 0549.22009
[7] L. CLOZEL , Invariant Harmonic Analysis on the Schwartz Space of a Reductive p-Adic Group. Harmonic Analysis on Reductive Groups , W. BARKER and P. SALLY Eds. (Progr. Math., No. 101, 1991 , pp. 101-121). MR 93h:22020 | Zbl 0760.22023 · Zbl 0760.22023
[8] S. S. GELBART and A. W. KNAPP , Irreducible Constituents of Principal Series of SLn (k) (Duke Math. J., Vol. 48, 1981 , pp. 313-326). Article | MR 82j:22018 | Zbl 0473.22010 · Zbl 0473.22010 · doi:10.1215/S0012-7094-81-04818-3
[9] S. S. GELBART and A. W. KNAPP , L-Indistinguishability and R-Groups for the Special Linear Group (Adv. Math., Vol. 43, 1982 , pp. 101-121). MR 83j:22009 | Zbl 0493.22005 · Zbl 0493.22005 · doi:10.1016/0001-8708(82)90030-5
[10] R. E. HOWE , Some Qualitative Results on the Representation Theory of GLn Over a p-Adic Local Field (Pacific J. Math., Vol. 73, 1977 , pp. 479-538). Article | MR 58 #11242 | Zbl 0385.22009 · Zbl 0385.22009 · doi:10.2140/pjm.1977.73.479
[11] N. IWAHORI , Generalised Tits Systems (Bruhat Decomposition) on p-Adic Semisimple Groups. Algebraic Groups and Discontinuous Subgroups , A. BOREL and G. MOSTOW, Proc. Symposia Pure Math., IX, Am. Math. Soc., Providence, 1966 , pp. 71-83. MR 35 #6693 | Zbl 0199.06901 · Zbl 0199.06901
[12] N. IWAHORI and H. MATSUMOTO , On Some Bruhat Decomposition and the Structure of the Hecke Rings of the p-Adic Chevalley Groups (Publ. Math. I.H.E.S., Vol. 25, 1965 , pp. 5-48). Numdam | MR 32 #2486 | Zbl 0228.20015 · Zbl 0228.20015 · doi:10.1007/BF02684396
[13] P. C. KUTZKO and P. J. SALLY Jr. , All Supercuspidal Representations of SLl Over a p-Adic Field are Induced. Representation Theory of Reductive Groups, Proceedings of the Utah Conference on Representation Theory (Progr. Math., No. 40, 1983 ). Zbl 0538.22011 · Zbl 0538.22011
[14] L. E. MORRIS , Tamely Ramified Intertwining Algebras , Preprint, 1991 . · Zbl 0854.22022
[15] A. MOY and P. J. SALLY Jr. , Supercuspidal Representations of SLn Over a p-Adic Field : the Tame Case (Duke Math. J., Vol. 51, 1984 , pp. 149-161). Article | Zbl 0539.22014 · Zbl 0539.22014 · doi:10.1215/S0012-7094-84-05108-1
[16] I. REINER , Maximal Orders , Academic Press, New York, 1975 . MR 52 #13910 | Zbl 0305.16001 · Zbl 0305.16001
[17] M. TADIĆ , Notes on Representations of Non-Archimedean SL (n) (Pacific J. Math., Vol. 152, 1992 , pp. 375-396). Article | MR 92k:22029 | Zbl 0724.22017 · Zbl 0724.22017 · doi:10.2140/pjm.1992.152.375
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.