zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Hydrodynamic limits of the Vlasov equation. (English) Zbl 0787.35070
The authors consider a spatially periodic plasma which, after a rescaling $x \to \varepsilon x$, $t \to \varepsilon t$, is described by the system $$\partial\sb t f\sp \varepsilon+v \cdot \partial\sb xf\sp \varepsilon+F\sp \varepsilon \cdot \partial\sb vf\sp \varepsilon=0,\ x \in[-1,1]\sp d,\ v \in \bbfR\sp d,$$ $$F\sp \varepsilon(x,t)=-\partial\sb x \int\sb{\bbfR\sp d} \varphi\sp \varepsilon (x-y) \rho\sp \varepsilon (y,t) dy,$$ $$\rho\sp \varepsilon (x,t)=\int f\sp \varepsilon (x,v,t) dv,\ \varphi\sp \varepsilon (x)=\varepsilon\sp{-d} \varphi(x/ \varepsilon),\ \varepsilon>0,$$ with a $C\sp \infty$ interaction potential $\varphi$ satisfying certain assumptions. For data of the form $f\sb 0(x,v)=\rho\sb 0(x) \delta(v-u\sb 0(x))$ the solutions are of the form $f\sp \varepsilon (x,v,t)= \rho\sp \varepsilon(x,t)\delta (v-u\sp \varepsilon(x,t))$ where the pair $(\rho\sp \varepsilon,\ u\sp \varepsilon)$ solves the system $$\partial\sb tu\sp \varepsilon (x,t)+(u\sp \varepsilon \cdot \nabla) u\sp \varepsilon(x,t)=- \partial\sb x \int \rho\sp \varepsilon(y,t) \varphi\sp \varepsilon(x-y)dy,$$ $$\partial\sb t \rho\sp \varepsilon+\text{div} (\rho\sp \varepsilon u\sp \varepsilon)=0.$$ It is shown that for $\varepsilon \to 0$ the solutions of the latter system converge weakly to a solution of the system $$\partial\sb tu+(u\cdot \nabla)u=-\partial\sb x \rho,\ \partial\sb t \rho+\text{div} (\rho u)= 0.$$ Provided $\rho>0$ the latter are the compressible Euler equations with $p={1 \over 2} \rho\sp 2$ as equation of state. In the same sense the incompressible limit of the Vlasov equation is established by the scaling $x \to \varepsilon x$, $t \to \varepsilon \lambda\sp{-1}t$, $v \to \lambda v$ with $\lambda=\varepsilon\sp{- \alpha}$, $0<\alpha<1$. Since the assumption on $f\sb 0$ rules out local fluctuations around the mean velocity $u$, one might wonder whether this result should be called a hydrodynamic limit of the {\sl Vlasov} equation, but this is merely a question of terminology.

35Q35PDEs in connection with fluid mechanics
76P05Rarefied gas flows, Boltzmann equation
76X05Ionized gas flow in electromagnetic fields; plasmic flow
Full Text: DOI