×

zbMATH — the first resource for mathematics

Global weak solutions of the Vlasov-Maxwell system with boundary conditions. (English) Zbl 0787.35072
The Vlasov-Maxwell system \[ \partial_ tf_ \beta+{v \over m_ \beta} \cdot \nabla_ xf_ \beta+{e_ \beta \over m_ \beta}(E+{1\over c}v \times B)\cdot \nabla_ vf_ \beta=0,\;1 \leq \beta \leq N \] \[ \partial_ tE-c \text{curl} B=-j=-4 \pi \sum_ \beta e_ \beta \int_{\mathbb{R}^ 3} v f_ \beta dv,\;\partial_ tB+c \text{curl} E=0, \] \[ \text{div} E=\rho=4 \pi \sum_ \beta e_ \beta \int_{\mathbb{R}^ 3}f_ \beta dv,\text{ div} B=0 \] models a collisionless plasma consisting of \(N\) different particle species which are described by time- dependent density functions \(f_ \beta=f_ \beta(t,x,v)\) on phase space \(\Omega \times \mathbb{R}^ 3\) with \(\Omega \subset \mathbb{R}^ 3\) open; the particles interact only by a selfconsistent electromagnetic field \((E,B)\).
Earlier investigations of the corresponding initial value problem were restricted to the case \(\Omega=\mathbb{R}^ 3\), i.e. boundary effects were not included. Global existence for general data is established only in a weak sense [cf. R. J. DiPerna and P. L. Lions, Commun. Pure Appl. Math. 42, No. 6, 729-757 (1989; Zbl 0698.35128)].
The author extends the latter result to the mathematically more difficult and physically more realistic case of \(\Omega \subset \mathbb{R}^ 3\) with \(C^{1,\mu}\) boundary, \(\mu>0\). The boundary is taken to be perfectly conducting, and the particles are specularly reflected or partially absorbed at the boundary. After making precise the notion of a weak solution, the author proceeds as follows:
The phase space is approximated by a sequence of bounded domains. On each of these a sequence of linear Vlasov and linear Maxwell systems is solved iteratively, based on the linear transport theory of P. Beals and V. Protopopescu [J. Math. Anal. Appl. 121, 370-405 (1987; Zbl 0657.45007)]. The compactness result of DiPerna and Lions (velocity averaging) yields a weak limit, first on each of the approximating domains and then on the original phase space \(\Omega \times \mathbb{R}^ 3\). This weak limit is the desired global weak solution.
The paper is carefully written and readable, a point which has to be stressed considering the technically difficult matter.
Reviewer: G.Rein (München)

MSC:
35Q35 PDEs in connection with fluid mechanics
35L50 Initial-boundary value problems for first-order hyperbolic systems
35D05 Existence of generalized solutions of PDE (MSC2000)
35Q60 PDEs in connection with optics and electromagnetic theory
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] [A] Arsenev, A.: Global existence of a weak solution of Vlasov’s system of equations. U.S.S.R. Comp. and Math. Phys.15, 131–143 (1975) · doi:10.1016/0041-5553(75)90141-X
[2] [BP] Beals, R., Protopopescu, V.: Abstract time-dependent transport equations. J. Math. Anal. Appl. 370–405 (1987) · Zbl 0657.45007
[3] [CK] Cooper, J., Klimas, A.: Boundary value problem for the Vlasov-Maxwell equations in one dimension. J. Math. Anal. Appl.75, 306–329 (1980) · Zbl 0454.35075 · doi:10.1016/0022-247X(80)90082-7
[4] [CS] Cooper, J., Strauss, W.: The initial boundary problem for the Maxwell equations in the presence, of a moving body. SIAM J. Math. Anal.16, 1165–1179 (1985). · Zbl 0593.35069 · doi:10.1137/0516086
[5] [DL] DiPerna, R.J., Lions, P.L.: Global weak solutions of Vlasov-Maxell systems. Comm. Pure Appl. Math.42, 729–757 (1989) · Zbl 0698.35128 · doi:10.1002/cpa.3160420603
[6] [GMP] Greenberg, W., van de Mee, C., Protopopescu, V.: Boundary Value Problems in Abstract Kinetic Theory. Boston-Basel: Birkhäuser 1987 · Zbl 0624.35003
[7] [GR] Greengard, C., Raviart, P-A.: A boundary-value problem for the stationary Vlasov-Poisson equation: The plane diode Comm. Pure Appl. Math.43, 473–507 (1990) · Zbl 0721.35084 · doi:10.1002/cpa.3160430404
[8] [GS1] Glassey, R., Strauss, W.: Singularity formation in a collisionless plasma could occur only at high velocities. Arch. Rat. Mech. Anal.92, 59–90 (1986) · Zbl 0595.35072 · doi:10.1007/BF00250732
[9] [GS2] Glassey, R., Strauss, W.: Absence of shocks in a initially dilute collisionless plasma. Comm. Math. Phys.113, 191–208 (1987) · Zbl 0646.35072 · doi:10.1007/BF01223511
[10] [GSc] Glassey, R., Schaeffer, J.: Global existence for the relativistic Vlasov-Maxell system with nearly neutral initial data. Commun. Math. Phys.119, 353–384 (1988) · Zbl 0673.35070 · doi:10.1007/BF01218078
[11] [H] Horst, E.: Global solutions of the Vlasov-Poisson system and their asymptotic growth. Preprint
[12] [J] Jones, D.S.: Methods in Electromagnetic Wave Propagation. Oxford: Clarendon 1979
[13] [N] Necąs, J.: Sur les domaines du type . Czechoslovak Math. J.12, 274–287 (1962)
[14] [Pf] Pfaffelmoser, K.: Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data. Preprint · Zbl 0810.35089
[15] [PL] Perthame, B., Lions, P.L.: Régularité des solutions du système de Valsov-Poisson en dimension 3. C.R. Acad. Sci. Paris311, SérieI, 205–210 (1990) · Zbl 0722.35022
[16] [S1] Strauss, W.: On weak solutions of semi-linear hyperbolic equations. Anais Acad. Brasil. Cienc.42, 645–651 (1990)
[17] [S2] Strauss, W.: Nonlinear Wave Equations. Providence, RI: A.M.S. 1989
[18] [Sc] Schaeffer, J.: Global existence of smooth solutions to the Vlasov-Poisson system in three-dimensions. Preprint
[19] [St] Stacey, W.: Fusion Plasma Analysis. New York: Wiley 1981
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.