Dragomir, S. S. Approximation of continuous linear functionals in real normed spaces. (English) Zbl 0787.46012 Rend. Mat. Appl., VII. Ser. 12, No. 2, 357-364 (1992). Let \(X\) be a Banach space, the norm derivatives are \[ (x,y)_{i(s)}= \lim_{t\to 0^{-(+)}} {\| y+ tx\|^ 2-\| y\|^ 2\over 2t},\quad\forall x,y\in X. \] In this paper, the author proves the Bishop- Phelps type theorem:Let \(X\) be a real Banach space. Then for every continuous linear functional \(f: X\to R\) and for any \(\varepsilon>0\) there exists an element \(u_{f,\varepsilon}\) such that \[ -\varepsilon\| x\|+ (x,u_{f,\varepsilon})_ i\leq f(x)\leq (x,u_{f,\varepsilon})_ s+ \varepsilon\| x\|. \] {}. Reviewer: Yu Xintai (Shanghai) Cited in 2 Documents MSC: 46B20 Geometry and structure of normed linear spaces Keywords:norm derivatives; Bishop-Phelps type theorem PDF BibTeX XML Cite \textit{S. S. Dragomir}, Rend. Mat. Appl., VII. Ser. 12, No. 2, 357--364 (1992; Zbl 0787.46012) OpenURL