zbMATH — the first resource for mathematics

The extension of Johnson’s homomorphism from the Torelli group to the mapping class group. (English) Zbl 0787.57008
The mapping class group \(M_ g\) of a Riemannian surface \(\Sigma_ g\) of genus \(g\geq 2\) is studied through its action on \(\pi_ 1(\Sigma_ g)\). The author represents \(M_ g\) by its action on the lower central series of \(\pi_ 1(\Sigma_ g)\) using methods of Dennis Sullivan and D. Johnson. The main theorems show that Johnson’s homomorphism can be extended from the Torelli group to the mapping class group via a crossed homomorphism.

57N05 Topology of the Euclidean \(2\)-space, \(2\)-manifolds (MSC2010)
57M50 General geometric structures on low-dimensional manifolds
57R50 Differential topological aspects of diffeomorphisms
Full Text: DOI EuDML
[1] Andreadakis, S.: On the automorphisms of free groups and free nilpotent groups. Proc. Lond. Math. Soc.15, 239-268 (1965) · Zbl 0135.04502 · doi:10.1112/plms/s3-15.1.239
[2] Brown, K.S.: Cohomology of Groups. Berlin Heidelberg New York: Springer 1982 · Zbl 0584.20036
[3] Earle, C.J., Eells, J.: The diffeomorphism group of a compact Riemann surface. Bull. Am. Math. Soc.73, 557-559 (1967) · Zbl 0196.09402 · doi:10.1090/S0002-9904-1967-11746-4
[4] Griffiths, P., Morgan, J.: Rational Homotopy Theory and Differential Forms. (Prog. Math., vol. 16) Boston Basel Stuttgart: Birkhäuser 1981 · Zbl 0474.55001
[5] Hain, R.: The geometry of the mixed Hodge structure on the fundamental group. Proc. Symp. Pure Math.46, 247-282 (1987) · Zbl 0654.14006 · doi:10.1557/PROC-105-247
[6] Johnson, D.: An abelian quotient of the mapping class groupJ g . Math. Ann.249, 225-242 (1980) · Zbl 0428.57002 · doi:10.1007/BF01363897
[7] Johnson, D.: The structure of the Torelli group I: A finite set of generators forJ g . Ann. Math.118, 423-442 (1983) · Zbl 0549.57006 · doi:10.2307/2006977
[8] Johnson, D.: A survey of the Torelli group. Contemp. Math.20, 165-179 (1983) · Zbl 0553.57002
[9] Johnson, D.: The structure of the Torelli group II and III. Topology24, 113-144 (1985) · Zbl 0571.57009 · doi:10.1016/0040-9383(85)90049-7
[10] Magnus, W., Karrass, A., Solitar, D.: Combinatorial Group Theory. New York: Wiley 1966 · Zbl 0138.25604
[11] Mal’cev, A.I.: On a class of homogeneous spaces. Izv. Akad. Nauk13, 9-32 (1949); Am. Math. Soc. Transl.39 (1951)
[12] Morita, S.: Characteristic classes of surface bundles. Invent. Math.90, 551-577 (1987) · Zbl 0608.57020 · doi:10.1007/BF01389178
[13] Morita, S.: Families of Jacobian manifolds and characteristic classes of surface bundles I. Ann. Inst. Fourier39, 777-810 (1989) · Zbl 0672.57015
[14] Morita, S.: Families of Jacobian manifolds and characteristic classes of surface bundles II. Math. Proc. Camb. Philos. Soc.105, 79-101 (1989) · Zbl 0775.57001 · doi:10.1017/S0305004100001389
[15] Morita, S.: Casson’s invariant for homology 3-spheres and characteristic classes of surface bundles I. Topology28, 305-323 (1989) · Zbl 0684.57008 · doi:10.1016/0040-9383(89)90011-6
[16] Morita, S.: On the structure and the homology of the Torelli group. Proc. Japan Acad.65, 147-150 (1989) · Zbl 0684.57006 · doi:10.2183/pjab.65.1
[17] Morita, S.: Mapping class groups of surfaces and three dimensional manifolds. In: Proc. ICM 90, Kyoto pp. 665-674, Berlin Heidelberg New York: Springer 1991 · Zbl 0743.57007
[18] Morita, S.: Abelian quotients of subgroups of the mapping class group of surfaces. (Preprint) · Zbl 0801.57011
[19] Pulte, M.: The fundamental group of a Riemann surface: mixed Hodge structures and algebraic cycles. Duke Math. J.57, 721-769 (1988) · Zbl 0678.14005 · doi:10.1215/S0012-7094-88-05732-8
[20] Raghunathan, M.S.: Discrete Subgroups of Lie Groups. Berlin Heidelberg New York: Springer 1972 · Zbl 0254.22005
[21] Sullivan, D.: Infinitesimal computations in topology. Publ. Math., Inst. Hautes Étud. Sci.47, 269-331 (1977) · Zbl 0374.57002 · doi:10.1007/BF02684341
[22] Sullivan, D.: On the intersection ring of compact three manifolds. Topology14, 275-277 (1975) · Zbl 0312.57003 · doi:10.1016/0040-9383(75)90009-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.