Toloi, ClĂ©lia M. C.; Morettin, Pedro A. Spectral analysis for amplitude-modulated time series. (English) Zbl 0787.62097 J. Time Ser. Anal. 14, No. 4, 409-432 (1993). Let \(\{X(n)\}\) be a non-observed strictly stationary process with \(E| X(n)|^ k<\infty\), \(k>0\), a sequence independent of \(\{X(n)\}\), and \(Y(n)=a(n)X(n)\) the observed process. The problem of estimation of the spectral density \(f_ x(\lambda)\) is considered under assumptions \(A,B\) or \(C\), where: A. \(\{a(n),n=0,\pm 1,\dots\}\) is a real deterministic sequence, asymptotically stationary, satisfying \(\sum_ n| a(n+1)- a(n)|<\infty\); B. \(\{a(n),n=0,\pm 1,\dots\}\) and \(\{X(n),n=0,\pm 1,\dots\}\) are independent, strictly stationary processes with \(E| a(n)|^ k<\infty\); C. \(\{a(n),\;n=0,\pm 1,\dots\}\) is a sequence of i.i.d. r.v. with nonzero mean \(\mu_ a\) and strictly positive variance \(\sigma^ 2_ a\), and \(\{X(n),n=0,\pm 1,\dots\}\) is independent of \(\{a(n)\}\). The asymptotic normality of a finite Fourier transform \(d^{(N)}_ Y(\lambda)=\sum^{N=1}_{n=0}Y(n)e^{-i\lambda n}\) and consistent estimators of \(f_ X(\lambda)\), using weights of periodograms, are given. Reviewer: N.Leonenko (Kiev) Cited in 3 Documents MSC: 62M15 Inference from stochastic processes and spectral analysis 62F12 Asymptotic properties of parametric estimators 62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH) Keywords:amplitude-modulated time series; spectral estimation; strictly stationary process; spectral density; asymptotic normality; finite Fourier transform; consistent estimators; weights of periodograms PDF BibTeX XML Cite \textit{C. M. C. Toloi} and \textit{P. A. Morettin}, J. Time Ser. Anal. 14, No. 4, 409--432 (1993; Zbl 0787.62097) Full Text: DOI References: [1] Alekseev V. G., Prob. Inf. Transm. 9 pp 50– (1973) [2] Bloomfield P., J. R. Statist. Soc. B 32 pp 369– (1970) [3] Brillinger D. R., Time Series:Data Analysis and Theory (1981) [4] Brillinger D. R., Time Series Analysis of Irregularly Observed Data pp 39– (1983) [5] Dunsmuir W., Time Series Analysis of Irregularly Observed Data pp 58– (1983) [6] W. Dunsmuir, and P. Robinson(1981 ) Asymptotic theory for time series containing missing and amplitude modulated observations. Sankhya A, 260 -81 . · Zbl 0531.62079 [7] Edwards R. E., Fourier Series:A Modern Introduction 1 (1967) [8] DOI: 10.1214/aoms/1177704572 · Zbl 0114.34503 · doi:10.1214/aoms/1177704572 [9] DOI: 10.1093/biomet/57.1.111 · Zbl 0201.21002 · doi:10.1093/biomet/57.1.111 [10] Parzen E., Bulletin de l’Institut International de Statistique 39 pp 87– (1962) [11] E. Parzen(1963 ) On spectral analysis with missing observations and amplitude modulation. Sankhya A, 383 -92 . · Zbl 0136.40701 [12] DOI: 10.1214/aoms/1177700069 · Zbl 0134.37104 · doi:10.1214/aoms/1177700069 [13] Thrall A. D., Time Series pp 357– (1980) [14] Toloi C. M. C., Brazilian J. Prob. Statist. 3 pp 97– (1989) [15] C. M. C. Toloi, and P. A. Morettin(1990 ) Spectral analysis for amplitude modulated time series. Technical Report. Department of Statistics, University of Sao Paulo. · Zbl 0715.62178 [16] DOI: 10.1214/aos/1176343545 · Zbl 0351.62066 · doi:10.1214/aos/1176343545 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.