Möhle, Martin On multi-type Cannings models and multi-type exchangeable coalescents. (English) Zbl 07874522 Theor. Popul. Biol. 156, 103-116 (2024). Summary: A multi-type neutral Cannings population model with migration and fixed subpopulation sizes is analyzed. Under appropriate conditions, as all subpopulation sizes tend to infinity, the ancestral process, properly time-scaled, converges to a multi-type coalescent sharing the exchangeability and consistency property. The proof gains from coalescent theory for single-type Cannings models and from decompositions of transition probabilities into parts concerning reproduction and migration respectively. The following section deals with a different but closely related multi-type Cannings model with mutation and fixed total population size but stochastically varying subpopulation sizes. The latter model is analyzed forward and backward in time with an emphasis on its behavior as the total population size tends to infinity. Forward in time, multi-type limiting branching processes arise for large population size. Its backward structure and related open problems are briefly discussed. MSC: 92-XX Biology and other natural sciences 60J90 Coalescent processes 60J10 Markov chains (discrete-time Markov processes on discrete state spaces) 92D15 Problems related to evolution 92D25 Population dynamics (general) Keywords:consistency; exchangeability; migration; multi-type branching process; multi-type coalescent process; mutation × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Allen, B.; McAvoy, A., The coalescent with arbitrary spatial and genetic structure, 2022, Preprint [2] Athreya, K. B.; Ney, P. E., Branching processes, (Die Grundlehren der Mathematischen Wissenschaften 196, 1972, Springer: Springer New York), MR0373040 · Zbl 0259.60002 [3] Bahlo, M.; Griffiths, R. C., Coalescence time for two genes from a subdivided population, J. Math. Biol., 43, 5, 397-410, 2001, MR1869800 · Zbl 0990.92028 [4] Barvinok, A., Matrices with prescribed row and column sums, Linear Algebra Appl, 436, 4, 820-844, 2012, MR2890890 · Zbl 1241.15016 [5] Barvinok, A.; Hartigan, J. A., An asymptotic formula for the number of non-negative integer matrices with prescribed row and column sums, Trans. Amer. Math. Soc., 364, 8, 4323-4368, 2012, MR2912457 · Zbl 1269.05006 [6] Bender, E. A., The asymptotic number of non-negative integer matrices with given row and column sums, Discrete Math., 10, 217-223, 1974, MR0389621 · Zbl 0293.05009 [7] Billingsley, P., Convergence of Probability Measures, 1999, Wiley: Wiley New York, MR1700749 · Zbl 0944.60003 [8] Birkner, M.; Blath, J.; Möhle, M.; Steinrücken, M.; Tams, J., A modified lookdown construction for the Xi-Fleming-Viot process with mutation and populations with recurrent bottlenecks, ALEA Lat. Am. J. Probab. Math. Stat., 6, 25-61, 2009, MR2485878 · Zbl 1162.60342 [9] Blath, J.; González Casanova, A.; Kurt, N.; Spanò, D., The ancestral process of long term seed bank models, J. Appl. Probab., 50, 3, 741-759, 2013, MR3102512 · Zbl 1301.92053 [10] Blath, J.; González Casanova, A.; Kurt, N.; Wilke-Berenguer, M., A new coalescent for seed-bank models, Ann. Appl. Probab., 26, 2, 857-891, 2016, MR3476627 · Zbl 1339.60137 [11] Bolthausen, E.; Sznitman, A.-S., On Ruelle’s probability cascades and an abstract cavity method, Comm. Math. Phys., 197, 2, 247-276, 1998, MR1652734 · Zbl 0927.60071 [12] Burke, C. J.; Rosenblatt, M., A Markovian function of a Markov chain, Ann. Math. Statist., 29, 1112-1122, 1958, MR0101557 · Zbl 0100.34402 [13] Cannings, C., The latent roots of certain Markov chains arising in genetics: a new approach, I. Haploid models, Adv. in Appl. Probab., 6, 2, 260-290, 1974, MR0343949 · Zbl 0284.60064 [14] Cannings, C., The latent roots of certain Markov chains arising in genetics: a new approach, II. Further haploid models, Adv. in Appl. Probab., 7, 2, 264-282, 1975, MR0371430 · Zbl 0339.60067 [15] Cannings, C., Multitype drift models, Adv. in Appl. Probab., 8, 1, 1-2, 1976, MR number not available · Zbl 0334.60043 [16] Donnelly, P.; Kurtz, T. G., A countable representation of the Fleming-Viot measure-valued diffusion, Ann. Probab., 24, 2, 698-742, 1996, MR1404525 · Zbl 0869.60074 [17] Donnelly, P.; Kurtz, T. G., Particle representations for measure-valued population models, Ann. Probab., 27, 1, 166-205, 1999, MR1681126 · Zbl 0956.60081 [18] Eldon, B., Structured coalescent processes from a modified Moran model with large offspring numbers, Theor. Popul. Biol., 76, 2, 92-104, 2009, MR number not available · Zbl 1213.92036 [19] Etheridge, A., (Some Mathematical Models from Population Genetics. Some Mathematical Models from Population Genetics, Lecture Notes in Mathematics, vol. 2012, 2011, Springer), MR2759587 · Zbl 1320.92003 [20] Etheridge, A. M.; Griffiths, R. C., A coalescent dual process in a Moran model with genic selection, Theor. Popul. Biol., 75, 4, 320-330, 2009, MR number not available · Zbl 1213.92038 [21] Etheridge, A. M.; Griffiths, R. C.; Taylor, J. E., A coalescent dual process in a Moran model with genic selection, and the lambda coalescent limit, Theor. Popul. Biol., 78, 2, 77-92, 2010, MR number not available · Zbl 1338.92102 [22] Ethier, S. N.; Kurtz, T. G., Markov Processes, Characterization and Convergence, 1986, Wiley: Wiley New York, MR0838085 · Zbl 0592.60049 [23] Ewens, W. J., The sampling theory of selectively neutral alleles, Theor. Popul. Biol., 3, 1, 87-112, 1972, MR0325177 · Zbl 0245.92009 [24] Ewens, W. J., Mathematical Population Genetics. I. Theoretical Introduction, 2004, Springer: Springer New York, MR2026891 · Zbl 1060.92046 [25] Gladstien, K., The characteristic values and vectors for a class of stochastic matrices arising in genetics, SIAM J. Appl. Math., 34, 4, 630-642, 1978, MR0475977 · Zbl 0386.92004 [26] González Casanova, A.; Peñaloza, L.; Siri-Jégousse, A., Seed bank Cannings graphs: how dormancy smoothes random genetic drift, ALEA Lat. Am. J. Probab. Math. Stat., 20, 2, 1165-1186, 2023, MR4652420 · Zbl 1532.92062 [27] Greven, A.; den Hollander, F., From high to low volatility: spatial Cannings with block resampling mechanism and spatial Fleming-Viot with seed-bank, (Probabilistic Structures in Evolution, 2021, EMS Ser. Congr. Rep. EMS Press: EMS Ser. Congr. Rep. EMS Press Berlin), 267-289, MR4331864 [28] Griffiths, R. C., A transition density expansion for a multi-allele diffusion model, Adv. in Appl. Probab., 11, 2, 310-325, 1979, MR0526415 · Zbl 0405.60079 [29] Griffiths, R. C., Allele frequencies in multidimensional Wright-Fisher models with a general symmetric mutation structure, Theor. Popul. Biol., 17, 1, 51-70, 1980, MR0568667 · Zbl 0435.92019 [30] Griffiths, R. C., Lines of descent in the diffusion approximation of neutral Wright-Fisher models, Theor. Popul. Biol., 17, 1, 37-50, 1980, MR0568666 · Zbl 0434.92011 [31] Griffiths, R. C., Neutral two-locus multiple allele models with recombination, Theor. Popul. Biol., 19, 2, 169-186, 1981, MR0630871 · Zbl 0512.92012 [32] Griffiths, R. C., A multi-type \(\Lambda \)-coalescent, (del Puerto, Inés M.; González, Miguel; Gutiérrez, Cristina; Martínez, Rodrigo; Minuesa, Carmen; Molina, Manuel; Mona, Manuel; Ramos, Alfonso, Branching Processes and their Applications. Branching Processes and their Applications, Lecture Notes in Statistics, 2016, Springer International Publishing: Springer International Publishing Cham), 23-37, MR3587979 · Zbl 1354.60093 [33] Harris, T. E., The Theory of Branching Processes, (Die Grundlehren der Mathematischen Wissenschaften 119, 1963, Springer: Springer Berlin), MR0163361 · Zbl 0117.13002 [34] Herbots, H. M., Stochastic Models in Population Genetics: Genealogy and Genetic Differentiation in Structured Populations, 1994, Queen Mary and Westfield College, University of London, Link [35] Herbots, H. M., The structured coalescent, (Donnelly, P.; Tavaré, S., Progress in Population Genetics and Human Evolution. Progress in Population Genetics and Human Evolution, IMA Math. Appl., vol. 87, 1997, Springer: Springer New York), 231-255, MR1493030 · Zbl 0907.92018 [36] Heuer, B., Convergence of the Genealogy of the Spatial Cannings Model, 2016, Institute for Mathematical Stochastics, Georg-August-Universität Göttingen, Germany, Zbl1366.62008 · Zbl 1366.62008 [37] Heuer, B.; Sturm, A., On spatial coalescents with multiple mergers in two dimensions, Theor. Popul. Biol., 87, 90-104, 2013, MR number not available · Zbl 1296.92155 [38] Hössjer, O., Coalescence theory for a general class of structured populations with fast migration, Adv. in Appl. Probab, 43, 4, 1027-1047, 2011, MR2867944 · Zbl 1358.92078 [39] Huillet, T.; Möhle, M., Asymptotic genealogies for a class of generalized Wright-Fisher models, Mod. Stoch. Theory Appl., 9, 1, 17-43, 2022, MR4388708 · Zbl 1486.60115 [40] Johnston, S. G.G.; Kyprianou, A.; Rogers, T., Multitype \(\Lambda \)-coalescents, Ann. Appl. Probab., 33, 6A, 4210-4237, 2023, MR4674049 · Zbl 1538.60052 [41] Kämmerle, K., The extinction probability of descendants in bisexual models of fixed population size, J. Appl. Probab., 28, 3, 489-502, 1991, MR1123823 · Zbl 0746.60079 [42] Kimura, M., Some problems of stochastic processes in genetics, Ann. Math. Statist., 28, 882-901, 1957, MR0094267 · Zbl 0085.14101 [43] Kimura, M.; Weiss, G. H., The stepping stone model of population structure and the decrease of genetic correlation with distance, Genetics, 49, 4, 561-576, 1964 [44] Kingman, J. F.C., The coalescent, Stochastic Process. Appl., 13, 3, 235-248, 1982, MR0671034 · Zbl 0491.60076 [45] Kingman, J. F.C., Exchangeability and the evolution of large populations, (Exchangeability in Probability and Statistics (Rome, 1981), 1982, North-Holland: North-Holland Amsterdam-New York), 97-112, MR0675968 · Zbl 0494.92011 [46] Kingman, J. F.C., On the genealogy of large populations, J. Appl. Probab., 19A, 27-43, 1982, MR0633178 · Zbl 0516.92011 [47] Kozakai, R.; Shimizu, A.; Notohara, M., Convergence to the structured coalescent process, J. App. Probab., 53, 2, 502-517, 2016, MR3514294 · Zbl 1342.92181 [48] Lenz, U., Ancestral Lines Under Mutation and Selection, 2016, Fachbereich Informatik und Mathematik, Johann Wolfgang Goethe-Universität Frankfurt: Fachbereich Informatik und Mathematik, Johann Wolfgang Goethe-Universität Frankfurt Germany, Link [49] Limic, V.; Sturm, A., The spacial \(\Lambda \)-coalescent, Electron. J. Probab., 11, 15, 363-393, 2006, MR2223040 · Zbl 1113.60077 [50] Liu, H. L.; Zhou, X. W., Generalized stepping stone model with \(\Xi \)-resampling mechanism, Acta Math. Sin. (Engl. Ser.), 38, 11, 1998-2018, 2022, MR4515130 · Zbl 1499.60305 [51] Mode, C. J., Multitype branching processes. Theory and applications, (Modern Analytic and Computational Methods in Science and Mathematics 34, 1971, American Elsevier Publishing Co. Inc.: American Elsevier Publishing Co. Inc. New York), MR0279901 · Zbl 0219.60061 [52] Möhle, M., Forward and backward processes in bisexual models with fixed population size, J. Appl. Probab., 31, 2, 309-332, 1994, MR1274789 · Zbl 0812.92017 [53] Möhle, M., The coalescent in population models with time-inhomogeneous environment, Stochastic Process. Appl., 97, 2, 199-227, 2002, MR1875333 · Zbl 1064.92034 [54] Möhle, M., Looking forwards and backwards in the multi-allelic neutral Cannings population model, J. Appl. Probab., 47, 3, 713-731, 2010, MR2731344 · Zbl 1210.60078 [55] Möhle, M.; Sagitov, S., A classification of coalescent processes for haploid exchangeable population models, Ann. Probab., 29, 4, 1547-1562, 2001, MR1880231 · Zbl 1013.92029 [56] Moran, P. A.P., The theory of some genetical effects of population subdivision, Austral. J. Biol. Sci., 12, 2, 109-116, 1959, MR number not available · Zbl 0088.36401 [57] Notohara, M., The coalescent and the genealogical process in geographically structured population, J. Math. Biol., 29, 1, 59-75, 1990, MR1083665 · Zbl 0726.92014 [58] Notohara, M.; Umeda, T., The coalescence time of sampled genes in the structured coalescent model, Theor. Popul. Biol., 70, 3, 289-299, 2006, MR number not available · Zbl 1112.92048 [59] Pitman, J., Coalescents with multiple collisions, Ann. Probab., 27, 4, 1870-1902, 1999, MR1742892 · Zbl 0963.60079 [60] Popovic, L.; Rivas, M., The coalescent point process of multi-type branching trees, Stochastic Process. Appl, 124, 12, 4120-4148, 2014, MR3264441 · Zbl 1311.60097 [61] Port, S. C., A Multitype Stochastic Population Model: An Extended VersionRM-5659-PR, 1968, The RAND Corp., MR number not available [62] Sagitov, S., The general coalescent with asynchronous mergers of ancestral lines, J. Appl. Probab., 36, 4, 1116-1125, 1999, MR1742154 · Zbl 0962.92026 [63] Sagitov, S., Convergence to the coalescent with simultaneous multiple mergers, J. Appl. Probab., 40, 4, 839-854, 2003, MR2012671 · Zbl 1052.92044 [64] Schweinsberg, J., Coalescents with simultaneous multiple collisions, Electron. J. Probab., 5, 2000, Paper (12) 50pp. MR1781024 · Zbl 0959.60065 [65] Schweinsberg, J., Coalescent processes obtained from supercritical Galton-Watson processes, Stochastic Process. Appl, 106, 1, 107-139, 2003, MR1983046 · Zbl 1075.60571 [66] Weibull, J. W., Evolutionary Game Theory, 1995, MIT Press: MIT Press Cambridge, MR1347921 · Zbl 0879.90206 [67] Weiss, G. H.; Kimura, M., A mathematical analysis of the stepping stone model of genetic correlation, J. Appl. Probab., 2, 1, 129-149, 1965, MR0177827 · Zbl 0151.25705 [68] Wilkinson-Herbots, H. M., Genealogy and subpopulation differentiation under various models of population structure, J. Math. Biol., 37, 6, 535-585, 1998, MR1664797 · Zbl 1036.92024 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.