Huber, Roland Continuous valuations. (English) Zbl 0788.13010 Math. Z. 212, No. 3, 455-477 (1993). A useful generalization of the class of adic rings with finitely generated ideals of definition is the class of \(f\)-adic rings: A topological ring is called \(f\)-adic if it has an open subring which is adic and has a finitely generated ideal of definition.In this paper we study, for an \(f\)-adic ring \(A\), the topological space \(\text{Cont}A\) of all equivalence classes of continuous valuations of \(A\). In the first part of the paper we prove that \(\text{Cont}A\) is a spectral space and give an explicit description of the set of constructible subsets of \(\text{Cont}A\). The affinoid rings occurring in rigid analytic geometry are \(f\)-adic. – In the second part of the paper we explain, for an affinoid ring \(A\), the relation between the topological space \(\text{Cont}A\) and the rigid analytic variety \(\text{Sp}A\). Reviewer: R.Huber (Regensburg) Cited in 3 ReviewsCited in 46 Documents MSC: 13J99 Topological rings and modules 13A18 Valuations and their generalizations for commutative rings Keywords:\(f\)-adic rings; continuous valuations; spectral space; affinoid rings PDF BibTeX XML Cite \textit{R. Huber}, Math. Z. 212, No. 3, 455--477 (1993; Zbl 0788.13010) Full Text: DOI EuDML OpenURL References: [1] Bochnak, J., Coste, M., Roy, M.-F.: Géométrie algébrique réelle. Berlin Heidelberg New York: Springer 1987 [2] Bosch, S., Güntzer, U., Remmert, R.: Non-archimedean analysis, Berlin Heidelberg New York: Springer 1984 · Zbl 0539.14017 [3] Bourbaki, N.: Commutative algebra. Paris: Hermann 1972 · Zbl 0279.13001 [4] Fresnel, J., Put, M. van der: Géométrie analytique rigide et applications. Boston Basel: Birkhäuser 1981 · Zbl 0479.14015 [5] Grothendieck, A., Dieudonne, J.: Eléments de Géométrie Algébrique I. Berlin Heidelberg New York: Springer 1971 [6] Grothendieck, A., Verdier, J.L.: Théorie des Topos (SGA 4, exposes I–VI). Berlin Heidelberg New York: Springer 1972 · Zbl 0256.18008 [7] Hochster, M.: Prime ideal structure in commutative rings. Trans. Am. Math. Soc.142, 43–60 (1969) · Zbl 0184.29401 [8] Huber, R.: A generalization of formal schemes and rigid analytic varieties (in preparation) · Zbl 0814.14024 [9] Huber, R.: On semianalytic subsets of rigid analytic varieties. Universität Regensburg (Preprint 1991) · Zbl 0854.32019 [10] Huber, R., Knebusch, M.: On valuation spectra. Universität Regensburg (Preprint 1991) · Zbl 0799.13002 [11] Prestel, A.: Einführung in die mathematische Logik und Modelltheorie, Braunschweig: Vieweg 1986 · Zbl 0616.03001 [12] Put, M. van der: Cohomology on affinoid spaces. Compos. Math.45, 165–198 (1982) · Zbl 0491.14014 [13] Tate, J.: Rigid analytic spaces. Invent. Math.12, 257–289 (1971) · Zbl 0212.25601 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.