Jakóbczak, Piotr The exceptional sets for functions of the Bergman space in the unit ball. (English) Zbl 0788.46061 Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 4, No. 2, 79-85 (1993). Let \(L^ 2 H(D)\) be the space of all \(L^ 2\) functions (with respect to Lebesgue measure) which are holomorphic on the domain \(D\subset C^ 2\). For \(w\in C\), let \(D_ w= D\cap(C\times \{w\})\), and let \(p(D_ w)=\{z\in C: (z,w)\in D\}\). Finally, for \(f\in L^ 2 H(D)\), let \(E(D,f)\) be the “exceptional” set consisting of all \(w\in C\) such that \(p(D_ w)\neq\emptyset\) and \(f|_{D_ w}\not\in L^ 2(p(D_ w))\). The author continues his study of these exceptional sets [cf. Port. Math., 50, No. 1, 115-128 (1993)]. The main result is the following theorem, which answers a question posed in the earlier paper.Theorem: Let \(B\) denote the unit ball in \(C^ 2\). For any \(r\in (0,1)\), there exists a function \(f\in L^ 2 H(B)\) such that \(E(B,f)=\{z\in C: | z|=r\}\). Reviewer: R.M.Aron (Kent) Cited in 2 Documents MSC: 46J15 Banach algebras of differentiable or analytic functions, \(H^p\)-spaces 46E20 Hilbert spaces of continuous, differentiable or analytic functions Keywords:Bergman space in the unit ball; exceptional sets PDFBibTeX XMLCite \textit{P. Jakóbczak}, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 4, No. 2, 79--85 (1993; Zbl 0788.46061) Full Text: EuDML