zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An algebraic criterion for symmetric Hopf bifurcation. (English) Zbl 0788.58038
From the authors’ abstract: “The equivariant Hopf bifurcation theorem states that bifurcating branches of periodic solutions with certain symmetry exist when the fixed-point subspace of the subgroup of symmetries is two-dimensional. We show that there is a group-theoretic restriction on the subgroup of symmetries in order for that subgroup to have a two-dimensional fixed-point subspace in any representation. We illustrate this technique for all irreducible representations of $SO (3)$ on the space $V\sb \ell$ of spherical harmonics for $\ell$ even”.
Reviewer: M.A.Teixeira (Campinas)

37G99Local and nonlocal bifurcation theory
34C23Bifurcation (ODE)
34C25Periodic solutions of ODE
37C80Symmetries, equivariant dynamical systems
Full Text: DOI