Shilo, L. V. A theorem on estimating the mean of a stationary random field. (English. Russian original) Zbl 0788.62086 Theory Probab. Math. Stat. 44, 135-139 (1992); translation from Teor. Veroyatn. Mat. Stat., Kiev 44, 135-140 (1991). Summary: An investigation is made of the asymptotic behavior of the variance of the arithmetic mean estimator of the unknown mean of a homogeneous random field that can be observed on the domain \(K_ T=\{(m,n): | m|+ | n|\leq T;\;m,\;n,\;T\in Z\}\). The concrete results relate to the case when the spectral density of the field vanishes at the origin of the coordinate system. MSC: 62M40 Random fields; image analysis 62G05 Nonparametric estimation 62G20 Asymptotic properties of nonparametric inference Keywords:arithmetic mean estimator; homogeneous random field; spectral density PDFBibTeX XMLCite \textit{L. V. Shilo}, Theory Probab. Math. Stat. 44, 135--139 (1991; Zbl 0788.62086); translation from Teor. Veroyatn. Mat. Stat., Kiev 44, 135--140 (1991)