×

Numerical experiments in Fourier asymptotics of Cantor measures and wavelets. (English) Zbl 0788.65129

A so-called multiperiodic function \(F\) fulfils a simple recursion relation involving additive and multiplicative structures. Such functions arise as Fourier transforms of self-similar objects, such as Cantor measures and wavelets. The authors are interested in the following problem: Find some conditions on the pointwise asymptotic behavior of \(F\) that would imply the known asymptotic behavior of \(\int^ x_ 0 | F(t)|^ q dt\) for \(x\to\infty\).
The results for the recursion \(F(x)= f(x/\rho) F(x/\rho)\), \(F(0)= 1\), where \(\rho>1\) and \(f\geq 0\) is 1-periodic with \(f(0)= 1\), are completely proven. For the general case, the authors present conjectures and interesting numerical experiments.
Reviewer: M.Tasche (Rostock)

MSC:

65Q05 Numerical methods for functional equations (MSC2000)
39B22 Functional equations for real functions
65T40 Numerical methods for trigonometric approximation and interpolation
28A80 Fractals
41A60 Asymptotic approximations, asymptotic expansions (steepest descent, etc.)
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems

References:

[1] Besicovitch A. S., Almost Periodic Functions (1954) · Zbl 0065.07102
[2] Daubechies I., Comm. Pure Appl. Math. 41 pp 909– (1988) · Zbl 0644.42026 · doi:10.1002/cpa.3160410705
[3] Daubechies, I. Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics 61. Philadelphia: SIAM. [Daubechies 1992] · Zbl 0776.42018
[4] Erdos P., Amer. J. Math. 62 pp 180– (1940) · Zbl 0022.35403 · doi:10.2307/2371446
[5] Furstenberg H., Ann. Math. Statist. 31 pp 457– (1960) · Zbl 0137.35501 · doi:10.1214/aoms/1177705909
[6] Hutchinson J., Indiana Univ. Math. J. 30 pp 713– (1981) · Zbl 0598.28011 · doi:10.1512/iumj.1981.30.30055
[7] Koksma J. F., Compositio Math. pp 250– (1935)
[8] Lau K.-S., J. Funct. Anal. 108 pp 427– (1992) · Zbl 0767.28007 · doi:10.1016/0022-1236(92)90031-D
[9] Lau K.-S., ”Mean quadratic variations and Fourier asymptotics of self-similar measures” · Zbl 0778.28005
[10] Salem R., Algebraic Numbers and Fourier Analysis (1983) · Zbl 0505.00033
[11] Strichartz R. S., Indiana Univ. Math. J. 39 pp 797– (1990) · Zbl 0695.28003 · doi:10.1512/iumj.1990.39.39038
[12] Strichartz R. S., Contemp. Math. 140 pp 123– (1992) · doi:10.1090/conm/140/1197594
[13] Strichartz R. S., ”Self-similar measures and their Fourier transforms III” (1992) · Zbl 0790.28003
[14] Strichartz R. S., Trans. Amer. Math. Soc. (1993)
[15] Wiener N., J. Math. Phys. 17 pp 233– (1939) · Zbl 0022.35501 · doi:10.1002/sapm1938171233
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.