×

zbMATH — the first resource for mathematics

On the variational principle for the equations of perfect fluid dynamics. (Sur le principe variationnel des équations de la mécanique des fluides parfaits.) (French) Zbl 0788.76065
A new version of a variational principle for the theory of perfect fluids is presented. This principle is used to obtain the basic equations of the equilibrium theory for both compressible and incompressible case. The motions can be either stationary or instationary.
Reviewer: V.A.Sava (Iaşi)

MSC:
76M30 Variational methods applied to problems in fluid mechanics
49S05 Variational principles of physics (should also be assigned at least one other classification number in Section 49-XX)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] V. I. ARNOLD, 1966, Sur un principe variationnel pour les écoulements stationnaires des liquides parfaits et ses applications aux problèmes de stabilité non lineaire, J. de Mécanique 5, 29-43. Zbl0161.22903 · Zbl 0161.22903
[2] P. CASAL, H. GOUIN, 1988, Sur les interfaces liquide-vapeur non isothermes, J. de Mécanique Th. et Appl. 7.
[3] D. EBIN, J. MARSDEN, 1970, Groups of diffeomorphisms and the motion ot an incompressible fluid, Annals of Math 92, 102-163. Zbl0211.57401 MR271984 · Zbl 0211.57401 · doi:10.2307/1970699
[4] P. R. GARABEDIAN, 1983, Non-parametric solution of the Euler equations for steady flows, Comm. Pure and Applied Math. 36, 529-535. Zbl0506.35082 MR709648 · Zbl 0506.35082 · doi:10.1002/cpa.3160360409
[5] D. J. KORTEWEG, 1901, Archives Néerlandaises, 28, 1-24.
[6] T. K. KORSHIYA, B. Y. LYUBIMOV, A. P. FAVPORSKII, 1982, Hamilton’s principle for a liquid in Euler coordinates, Diff. Equ. 18. Zbl0555.76086 · Zbl 0555.76086
[7] J. J. MOREAU, 1979, Séminaire d’Analyse convexe de Montpellier 9, exposé 8, On nonlinear problems of analysis and geometry (1979), Pitman Lecture notes in Maths, 46.
[8] J.-M. RAKOTOSON, D. SERRE, Sur un problème d’optimisation lié aux equations de Navier-Stokes, Soumis pour publication. Zbl0797.49006 · Zbl 0797.49006 · numdam:ASNSP_1993_4_20_4_633_0 · eudml:84164
[9] P. ROUCHON, 1990, On the Arnol’d stability enterion for steady state flows of an idéal fluid, Preprint Ecole des Mines de Paris. Zbl0742.76038 · Zbl 0742.76038
[10] J. SERRIN, 1959, Mathematical principles of classical fluid mechanics, Handbuch der Physik VIII, 1. MR108116 · Zbl 0086.20001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.