×

zbMATH — the first resource for mathematics

Uniqueness of the solution of the equation in one dimension or with spherical symmetry of a viscous heat-conductive gas. (Unicité de la solution de l’équation monodimensionnelle ou à symétrie sphérique d’un gaz visqueux et calorifère.) (French) Zbl 0788.76070
The paper examines the uniqueness of the solution of the equation in one dimension or with spherical symmetry of a viscous heat-conducting gas. It is shown that there is at most one solution of the flow equation with boundary conditions which correspond to suitably assigned initial values of the density, velocity and temperature.
Reviewer: V.A.Sava (Iaşi)

MSC:
76N15 Gas dynamics (general theory)
35Q35 PDEs in connection with fluid mechanics
80A20 Heat and mass transfer, heat flow (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Fujita Yashima H., Benabidallah R.,Equation à symétrie sphérique d’un gaz visqueux et calorifère avec la surface libre, Preprint n. 2.88 (616). Dip. Mat. Pisa, 1992. · Zbl 0881.76080
[2] Fujita Yashima H., Padula M., Novotný A.,Equation monodimensionnelle d’un gaz visqueux et calorifère avec des conditions initiales moins restrictives. A paraître sur Ricerche Matematica. · Zbl 0806.76076
[3] Landau L.D., Lifshitz E.M.,Hydrodynamique (en russe). Nauka, Moscou, 1954 (la 3 e édition 1986); Mécanique des fluides (traduction française). Mir, Moscou, 1971.
[4] Shelukhin V.V.,Problèmes aux limites pour les équations d’un gaz barotropique visqueux avec la densité initiale non-négative (en russe). Niestatsionarnye Problemy Mekhaniki, Sibirskoe Otdelenie Akad. Nauk SSSR, Inst. Gidrodinamiki,74 (1986), 108–125.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.