Voulgaris, Petros G.; Dahleh, Munther A.; Valavani, Lena S. \({\mathcal H}^ \infty\) and \({\mathcal H}^ 2\) optimal controllers for periodic and multirate systems. (English) Zbl 0788.93023 Automatica 30, No. 2, 251-263 (1994). Summary: We present the solutions to the optimal \(\ell^ 2\) to \(\ell^ 2\) disturbance rejection problem \(({\mathcal H}^ \infty)\) as well as to the LQG \(({\mathcal H}^ 2)\) problem in periodic systems using the lifting technique. Both problems involve a causality condition on the optimal LTI compensator when viewed in the lifted domain. The \({\mathcal H}^ \infty\) problem is solved using Nehari’s theorem whereas in the \({\mathcal H}^ 2\) problem the solution is obtained using the Projection theorem. Exactly the same methods of solution can be applied in the case of multirate sampled data systems. Finally, stability robustness issues in periodic and multirate systems are analyzed. Cited in 5 Documents MSC: 93B36 \(H^\infty\)-control Keywords:disturbance rejection problem; stability robustness PDF BibTeX XML Cite \textit{P. G. Voulgaris} et al., Automatica 30, No. 2, 251--263 (1994; Zbl 0788.93023) Full Text: DOI References: [1] Bittanti, S.; Colaneri, P.; de Nicolao, G., The difference periodic Riccati equation for the periodic prediction problem, IEEE Trans. Aut. Control, AC-33, 706-712 (1988) · Zbl 0656.93067 [2] Bittanti, S.; Colaneri, P.; de Nicolao, G., The algebraic equation for the discrete-time periodic prediction problem, Syst. Control Lett., 14, 71-78 (1990) · Zbl 0692.93070 [3] Chapellat, H.; Dahleh, M.; Bhattacharyya, S., Optimal disturbance rejection for periodic systems, (Technical Report 89-019 (1989), Texas A and M University: Texas A and M University College Station, TX) · Zbl 0774.93059 [4] Colaneri, P., Hamiltonian matrices for lifted systems and periodic Riccati equations in \(H2H∞\) analysis and control, (Proc. IEEE 30th Conf. on Decision and Control. Proc. IEEE 30th Conf. on Decision and Control, Brighton, U.K. (1991)), 1914-1919 [5] Colaneri, P., Output stabilization via pole placement of discrete-time linear periodic systems, IEEE Trans. Aut. Control, AC-36, 736-739 (1991) [6] Dahleh, M. A.; Voulgaris, P. G.; Valavani, L. S., Optimal rejection of bounded and persistent disturbances in periodic systems, (Proc. 29th IEEE CDC. Proc. 29th IEEE CDC, Honolulu, HI (1990)) [7] Dahleh, M. A.; Voulgaris, P.; Valavani, L., Optimal and robust controllers for periodic and multirate systems, IEEE Trans. Aut. Control, AC-37, 90-99 (1992) · Zbl 0747.93028 [8] Desoer, C. A.; Liu, R. W.; Murray, J.; Saeks, R., Feedback system design: The fractional representation approach to analysis and synthesis, IEEE Trans. Aut. Control, AC-25, 399-412 (1980) · Zbl 0442.93024 [9] Desoer, C. A.; Vidyasagar, M., (Feedback Systems: Input-Output Properties (1975), Academic Press: Academic Press New York, NY) · Zbl 0327.93009 [10] de Souza, C. E.; Grevers, M. R.; Goodwin, G. C., Riccati equations in optimal filtering of non stabilizable systems having singular matrices, IEEE Trans. Aut. Control, AC-31 (1986) [11] Doyle, J., Guaranteed margins for LQG regulators, IEEE Trans. Aut. Control, AC-23, 756-757 (1978) [12] Feintuch, A.; Khargonekar, P. P.; Tannenbaum, A., On the sensitivity minimization problem of linear time varying periodic systems, SIAM J. Control Optimiz., 24, 1076-1085 (1986) · Zbl 0624.93021 [13] Francis, B. A., (A Course in \(H_∞\) Control Theory, Vol. 88 of Lecture Notes in Control and Information Sciences (1987), Springer: Springer New York) · Zbl 0624.93003 [14] Georgiou, T. T.; Khargonekar, P. P., A constructive algorithm for sensitivity optimization of periodic systems, SIAM J. Control Optimiz., 25, 334-340 (1987) [15] Khargonekar, P. P.; Poolla, K.; Tannenbaum, A. R., Robust control of linear time-invariant plants using periodic compensation, IEEE Trans. Aut. Control, AC-30, 1088-1096 (1985) · Zbl 0573.93013 [16] Kwakernaak, H.; Sivan, R., (Linear Optimal Control Systems (1972), Wiley Interscience: Wiley Interscience New York) · Zbl 0276.93001 [17] Meyer, D. G., A new class of shift-varying operators, their shift-invariant equivalents, and multirate digital systems, IEEE Trans. Aut. Control, AC-35, 429-433 (1990) · Zbl 0705.93013 [18] Meyer, D. G., A parametrization of stabilizing controllers for multirate sampled-data systems, IEEE Trans. Aut. Control, AC-35, 233-236 (1990) · Zbl 0705.93031 [19] Meyer, R. A.; Burrus, C. S., A unified analysis of multirate and periodically time-varying digital filters, IEEE Trans. Circuits Syst., CS-22, 162-168 (1975) [20] Ravi, R.; Khargonekar, P. P.; Minto, K. D.; Nett, C. N., Controller parametrization for time-varying multirate plants, IEEE Trans. Aut. Control, AC-35, 1259-1262 (1990) · Zbl 0719.93070 [21] Shamma, J.; Dahleh, M., Time-varying versus time-invariant compensation for rejection of persistent bounded disturbances and robust stabilization, Trans. Aut. Control, AC-36, 838-848 (1991) · Zbl 0746.93056 [22] Shamma, J. S., The necessity of the small gain theorem for time varying and nonlinear systems, IEEE Trans. Aut. Control, AC-36 (1991) · Zbl 0758.93022 [23] Sideris, A.; Rotstein, H., \(H_∞\) optimization with time domain constraints over a finite horizon, (Proc. 29th CDC. Proc. 29th CDC, Honolulu, HI (1990)) [24] Vidyasagar, M., (Control Systems Synthesis: A Factorization Approach (1984), MIT Press: MIT Press Cambridge, MA) · Zbl 0655.93001 [25] Youla, D. C.; Jabr, H. A.; Bongiorno, J. J., Modern Wiener-Hopf design of optimal controllers, Part II: The multivariable case, IEEE Trans. Aut. Control, AC-21, 319-338 (1976) · Zbl 0339.93035 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.