×

zbMATH — the first resource for mathematics

An analysis of front tracking for chromatography. (English) Zbl 0789.35106
Summary: It is proved that front tracking has a convergent subsequence for the equations of chromatography for initial data with large variation. We show that this is also true for a variant of front tracking which tracks all waves. An example of a computation with the latter is presented.

MSC:
35L65 Hyperbolic conservation laws
35L80 Degenerate hyperbolic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bressan, A.: Global solutions of conservation laws by wave-front tracking, Preprint, Mathematics Department, University of Colorado, 1991.
[2] Bressan, A.: A contractive metric for systems of conservation laws with coinciding shock and rarefaction curves, Preprint, Mathematics Department, University of Colorado, 1991. · Zbl 0802.35095
[3] Dafermos, C. M.: Polygonal approximations of solutions of the initial-value problem for a conservation law,J. Math. Anal. Appl. 38 (1972), 33-41. · Zbl 0233.35014 · doi:10.1016/0022-247X(72)90114-X
[4] DiPerna, R.: Global existence of solutions to nonlinear hyperbolic systems of conservation laws,J. Differential Equations 20 (1976), 187-212. · Zbl 0314.58010 · doi:10.1016/0022-0396(76)90102-9
[5] Glimm, J.: Solutions in the large for nonlinear hyperbolic systems of equations,Comm. Pure Appl. Math. 18 (1965), 95-105. · Zbl 0141.28902 · doi:10.1002/cpa.3160180408
[6] Hedstrom, G. W.: Some numerical experiments with Dafermos’ method for nonlinear hyperbolic equations, in K. Ansorge and W. Törnig (eds),Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1972. · Zbl 0241.65068
[7] James, F.: Sur la modélisation mathématique des équilbres diphasiques et des colonnes de chromatographie, These de Doctorate de l’Ecole Polytechnique, 1990.
[8] Kuznetsov, N. N.: Several mathematical problems in chromatography,Vychisl. Metod. Programm. 6 (1967), 242-258.
[9] LeVeque, R. J.: Large time-step shock capturing techniques for scalar conservation laws,SIAM J. Numer. Anal. 19 (1982), 1091-1109. · Zbl 0493.65040 · doi:10.1137/0719080
[10] Rhee, H.-K., Aris, R. and Amundsen, N. R.: On the theory of multicomponent chromatography,Proc. Roy. Soc. London Ser. A 267 (1182) (1970), 419-455. · Zbl 0233.76157
[11] Risebro, N. H.: A front-tracking alternative to the random choice method, Preprint Series, Institute of Mathematics, University of Oslo, 1989.
[12] Risebro, N. H. and Tveito, A.: A front tracking method for conservation laws in one dimension, Preprint Series, Institute of Mathematics, University of Oslo, 1990. · Zbl 0756.65120
[13] Risebro, N. H. and Tveito, A.: Front tracking applied to a nonstrictly hyperbolic system of conservation laws, Preprint Series, Institute of Mathematics, University of Oslo, 1990. · Zbl 0736.65075
[14] Serre, D.: Solutions à variations bornées pour certains systèmes hyperboliques de lois de conservation,J. Differential Equations 68 (1987), 137-168. · Zbl 0627.35062 · doi:10.1016/0022-0396(87)90189-6
[15] Smoller, J.:Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1983. · Zbl 0508.35002
[16] Swartz, B. K. and Wendroff, B.: Aztec: A front tracking code based on Godunov’s method,Appl. Numer. Math. 2 (1986), 385-397. · Zbl 0601.76088 · doi:10.1016/0168-9274(86)90041-3
[17] Temple, B.: Degenerate systems of conservation laws,Contemp. Math. 60 (1987), 125-133. · Zbl 0647.35051
[18] Woodward, P. and Colella, P.: The numerical simulation of two dimensional fluid flow with strong shocks,J. Comput. Phys. 54 (1984), 115-173. · Zbl 0573.76057 · doi:10.1016/0021-9991(84)90142-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.