Rassias, J. M. On the stability of the Euler-Lagrange functional equation. (English) Zbl 0789.46036 C. R. Acad. Bulg. Sci. 45, No. 6, 17-20 (1992). Let \(X\) be a normed linear space, \(Y\) be a Banach space, and \(f\) and \(N\) be two mappings from \(X\) into \(Y\). We say \(N\) (resp. \(f\)) is a Euler- Lagrange mapping (resp. approximately Euler-Lagrange mapping) if and only if \[ N(x+ y)+ N(x- y)= 2[N(x)+ N(y)] \] (resp. \(\| f(x+ y)+ f(x- y)- 2[f(x)+ f(y)\|\leq C\| x\|^ a\| y\|^ b\) for any \(x,y\in X\) with some constants \(C\geq 0\), \(a\) and \(b\) such that \(0\leq a+ b<2\)).The author proved that for any approximately Euler-Lagrange mapping \(f\) there is a unique nonlinear Euler-Lagrange mapping \(N\) such that \[ \| f(x)- N(x)\|\leq C(4- 2^{a+b})^{-1}\| x\|^{a+b}\quad\forall x\in X. \] {}. Reviewer: Duc Duong Minh (Ho Chi Minh City) Cited in 2 ReviewsCited in 14 Documents MSC: 46G05 Derivatives of functions in infinite-dimensional spaces Keywords:approximately Euler-Lagrange mapping PDF BibTeX XML Cite \textit{J. M. Rassias}, C. R. Acad. Bulg. Sci. 45, No. 6, 17--20 (1992; Zbl 0789.46036)