zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fractal roughness in contact problems. (English. Russian original) Zbl 0789.73062
The roughness of real polished bodies is shown to be fractal in character. A relation is found between the fractal dimension of a surface and its statistical properties. Models are constructed of the contact of fractal-rough punches and the smooth surface of a deformable half-space by a modelling Winkler medium and a rigidly plastic medium. Asymptotic power laws have been obtained which associate the force operating on the punch and the depth of indentation for different (both plastic and elastic) models of the deformed base. The relation between the power index and the fractal dimension of the surface and the print is determined.

74A55Theories of friction (tribology)
74M15Contact (solid mechanics)
Full Text: DOI
[1] Demkin, N. B.: The true area of contact between solid surfaces. (1962)
[2] Bowden, F. P.; Tabor, D.: Friction and lubrication of solids. 1 and 2. (1950) · Zbl 0987.74002
[3] Johnson, K. L.: Contact mechanics. (1985) · Zbl 0599.73108
[4] Sviridenok, A. I.; Chizhik, S. A.; Petrokovets, M. I.: Mechanics of discrete contact. (1990)
[5] Goryacheva, I. G.; Dobychin, M. N.: Contact problems in tribology. (1988)
[6] Borodich, F. M.: On the problem of the contact of two previously distorted half-spaces. Prikl. mekh. Tekl. fiz. 2, 160-162 (1984)
[7] Mandelbrot, B. B.: The fractal geometry of nature. (1982) · Zbl 0504.28001
[8] Pfeifer, P.: Fractal dimension as working tool for surface-roughness problems. Appl. surf. Sci. 18, 146-164 (1984)
[9] Ling, F. F.: Fractal engineering surfaces and tribology. Wear 136, 141-156 (1990)
[10] Gagnepain, J. J.; Roques-Carmes, C.: Fractal approach to two-dimensional and three-dimensional surface roughness. Wear 109, 119-126 (1986)
[11] Mandelbrot, B. B.; Passoja, D. E.; Paullay, A. J.: Fractal character of fracture surfaces of metals. Nature 308, 721-722 (1984)
[12] Sayles, R. S.; Thomas, T. R.: Surface topography as a non-stationary random process. Nature 271, 431-434 (1978)
[13] Dubuc, B.; Zucker, S. W.; Tricot, C.; Quiniou, J. F.; Wehbi, D.: Evaluating the fractal dimension of surfaces. Proc. roy. Soc. London 425, 113-127 (1989) · Zbl 0703.28006
[14] Feder, J.: Fractals. (1989) · Zbl 0648.28006
[15] Archard, J. F.: Elastic deformation and the laws of friction. Proc. royal soc. Ser. 243, 190-205 (1957)
[16] Borodich, F. M.: Hertz-type contact problems for an anisotropic physically non-linear elastic medium. Probl. prochnosti 12, 47-53 (1989)
[17] Ling, F. F.: The possible role of fractal geometry in tribology. Tribology trans. 32, 497-505 (1989)
[18] Majumdar, A.; Bhushan, B.: Role of fractal geometry in roughness characterization and contact mechanics of surfaces. Trans ASME J. Tribology 112, 205-216 (1990)
[19] Borodich, F. M.: On the deforming properties of multilayer metal packets. Mtt 4, 105-112 (1987)
[20] Barenblatt, G. I.; Botvina, L. R.: Self-similarity of fatigue fracture. Mtt 4, 161-165 (1983)
[21] Mosolov, A. B.; Dinariyevo, O. Yu.: Self-similarity and the fractal geometry of fracture. Probl. prochnosti 1, 3-7 (1988)
[22] Gist, G. A.: Ultrasonic attenuation and fractal surfaces in porous media. Phys. rev. 39, 7295-7298 (1989)
[23] Avnir, D.; Farin, D.; Pfeifer, P.: Chemistry in noninteger dimensions between two and three. II. fractal surface of adsorbents. J. chem. Phys. 79, 3566-3571 (1983)
[24] Hohr, A.; Neumann, H. -B.; Schmidt, P. W.; Pfeifer, P.; Avnir, D.: Fractal surface and cluster structure of controlled-pore glasses and vycor porous Glass as revealed by small-angle X-ray and neutron scattering. Phys. rev. 38, 1462-1467 (1988)
[25] Falconer, K. J.: Geometry of fractal sets. (1985) · Zbl 0587.28004
[26] Peitgen, H. -O.; Saupe, D.: The science of fractal images. (1988)
[27] Mandelbrot, B.: Self-affine fractal sets. Fractals in physics, 9-47 (1988)
[28] Liu, S.; Kaplan, T.; Gray, L.: The response of rough surfaces to an alternating current. Fractals in physics, 543-552 (1988)
[29] Borodich, F. M.; Mosolov, A. B.: Fractal contact of solids. Zh. tekh. Fiz. 61, 50-54 (1991)
[30] Hill, R.: Mathematical theory of plasticity. (1950) · Zbl 0041.10802
[31] Aleksandrov, V. M.; Mkhitaryan, S. M.: Contact problems for bodies with thin coverings and interlayers. (1983)
[32] Shtayerman, I. Ya.: The contact problem of the theory of elasticity. (1949)
[33] Giugliarelli, G.; Martin, A.; Stella, A. L.: Spectral properties of fractal surfaces. Europhys letters 11, 101-106 (1990)