Mollin, R. A. Ambiguous classes in quadratic fields. (English) Zbl 0790.11076 Math. Comput. 61, No. 203, 355-360 (1993). Sei \(K\) ein reell-quadratischer Zahlkörper mit Diskriminante \(\Delta\), seien \(q_ 1,\dots,q_ n\) paarweise teilerfremde quadratfreie Teiler von \(\Delta\) und \(Q_ 1,\dots,Q_ n\) deren Primteiler in \(K\). Sei \[ F_ i(x)= q_ i x^ 2+ (\alpha_ i- 1)q_ i x+(4q_ i)^{- 1}(\alpha_ i q^ 2_ i- q^ 2_ i-\Delta) \] mit \(\alpha_ i=1\), falls \(4q_ i|\Delta\) und \(\alpha_ i=2\) sonst. Der Autor beweist ein Kriterium folgenden Typs: Stellen die quadratischen Polynome \(F_ i(z)\) hinreichend viele Primzahlen dar, so besteht die Klassengruppe von \(K\) nur aus den Klassen von \(1,Q_ 1,\dots,Q_ n\). Reviewer: F.Halter-Koch (Graz) Cited in 5 Documents MSC: 11R11 Quadratic extensions 11R29 Class numbers, class groups, discriminants 11Y40 Algebraic number theory computations Keywords:real quadratic fields; class group; quadratic polynomials PDF BibTeX XML Cite \textit{R. A. Mollin}, Math. Comput. 61, No. 203, 355--360 (1993; Zbl 0790.11076) Full Text: DOI OpenURL References: [1] F. Halter-Koch, Prime-producing quadratic polynomials and class numbers of quadratic orders, Computational number theory (Debrecen, 1989) de Gruyter, Berlin, 1991, pp. 73 – 82. · Zbl 0728.11049 [2] S. Louboutin, R. A. Mollin, and H. C. Williams, Class numbers of real quadratic fields, continued fractions, reduced ideals, prime-producing quadratic polynomials and quadratic residue covers, Canad. J. Math. 44 (1992), no. 4, 824 – 842. · Zbl 0771.11039 [3] R. A. Mollin and H. C. Williams, Prime producing quadratic polynomials and real quadratic fields of class number one, Théorie des nombres (Quebec, PQ, 1987) de Gruyter, Berlin, 1989, pp. 654 – 663. [4] R. A. Mollin and H. C. Williams, On prime valued polynomials and class numbers of real quadratic fields, Nagoya Math. J. 112 (1988), 143 – 151. · Zbl 0629.12004 [5] R. A. Mollin and H. C. Williams, Solution of the class number one problem for real quadratic fields of extended Richaud-Degert type (with one possible exception), Number theory (Banff, AB, 1988) de Gruyter, Berlin, 1990, pp. 417 – 425. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.