×

Group inverses and Drazin inverses over Banach algebras. (English) Zbl 0790.15005

Necessary and sufficient conditions are given for the existence of group and Drazin inverses of matrices over a complex commutative unital Banach algebra. Explicit formulas are provided for the inverses. Properties of these inverses and an application to operator theory are discussed.

MSC:

15A09 Theory of matrix inversion and generalized inverses
47C05 Linear operators in algebras
46J05 General theory of commutative topological algebras
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bapat, R. B. and Robinson, D. W.,The Moore-Penrose inverse over a commutative ring, Preprint. · Zbl 0764.15002
[2] Ben-Israel, A. and Greville, T. N. E.,Generalized inverses and applications, Wiley, 1974. · Zbl 0305.15001
[3] Campbell, S. L.,Recent applications of generalized inverses, Research notes in mathematics 66, Pitman, 1982.
[4] Gelfand, I., Raikov, D. and Shilov, G.,Commutative Normed Rings, Chelsea, 1964.
[5] Gohberg, I., Goldberg, S. and Kaashoek, M.A.,Classes of Linear Operators, Vol. 1, Operator Theory: Advances and Applications, vol. 49, Birkhäuser Verlag, Basel, 1990. · Zbl 0745.47002
[6] Gohberg, I. and Krupnik, N. Ya.,Einführung in die theorie der eindimensionalen singulären integraloperatoren, Mathematische Reihe, Band 63, Birkhäuser Verlag, Basel, 1979. · Zbl 0413.47040
[7] Gohberg, I., Lancaster, P. and Rodman, L.,Invariant subspaces of matrices with applications, John Wiler & sons, 1986. · Zbl 0608.15004
[8] Huang D. R.,Generalized inverses over Banach algebras, Integr Equat Oper Th15 (1992), 454-469. · Zbl 0761.46038 · doi:10.1007/BF01200329
[9] Prasad, K. M., Rao, K. P. S. B. and Bapat, R. B.,Generalized inverses over integral domains. II. Group inverses and Drazin inverses, Linear Algebra Appl146 (1991), 31-47. · Zbl 0722.15007 · doi:10.1016/0024-3795(91)90018-R
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.