Amoroso, Francesco \(f\)-transfinite diameter and number theoretic applications. (English) Zbl 0790.41007 Ann. Inst. Fourier 43, No. 4, 1179-1198 (1993). We generalize the classical notion of transfinite diameter introducing a weight function \(f\). This allow us to get new results in the study of polynomials defined by extremal conditions. In the second part, some applications to the irrationality measures of logarithms are given. Reviewer: F.Amoroso Cited in 17 Documents MSC: 41A10 Approximation by polynomials 31C15 Potentials and capacities on other spaces 11J82 Measures of irrationality and of transcendence Keywords:transfinite diameter; weight function; irrationality measures of logarithmis × Cite Format Result Cite Review PDF Full Text: DOI Numdam EuDML References: [1] [A] , Sur le diamètre transfini entier d’un intervalle réel, Ann. Inst. Fourier, 40-4 (1990), 885-911. · Zbl 0713.41004 [2] [AR] and , Legendre polynomials and irrationality, J. reine angew. Math., 318 (1980), 137-155. · Zbl 0425.10039 [3] [C] , Number Theoretic Applications of Polynomials with Rational Coefficients Defined by Extremality Conditions, Arithmetic and Geometry, Vol I, ed. M.Artin and J.Tate, Birkhäuser. Progress in Math., 35 (1983), 61-105. · Zbl 0547.10029 [4] [DV] and , Some remarks on Beukers’integrals, Colloquia Math. Soc. János Bolyai, 51 (1987), 637-657. · Zbl 0755.11019 [5] [FE] , Über die Verteilung der Wurzeln gewisen algebraischen Gleichungen mit ganzzahligen Koeffzienten, Mathematische Zeitschrift, 17 (1923), 228-249. · JFM 49.0047.01 [6] [FU] , On the theory of potentials in locally compact spaces, Acta Math., 103 (1960), 139-215. · Zbl 0115.31901 [7] [HA] , Legendre type polynomials and irrationality measures, J. reine angew. Math., 407 (1990), 99-125. · Zbl 0692.10034 [8] [HI] , Analytic function theory, Gim and Company, Boston, 1962. · Zbl 0102.29401 [9] [L] , Foundations of modern potential theory, Springer-Verlag, Berlin, 1972. · Zbl 0253.31001 [10] [M] , Singular integral equations, Noordhoff Internationals Publishing, Leyden, 1977. [11] Nonlinear Analysis on Manifolds. Monge-Ampère Equations, 252 (1982) · Zbl 0453.10008 [12] [RH1] , Approximants de Padé et mesures effectives d’irrationalité, Séminaire de Théorie des Nombres, Paris 1985-1986, ed. C. Goldstein, Birkhäuser, Progress in Math., 71 (1987), 155-164. · Zbl 0632.10034 [13] [RH2] , Diamètre transfini et mesures d’irrationalité des logarithmes, notes of lectures given at the University of Pise in March 1989. [14] [RU] , A lower bound for the approximation of ln 2 by rational numbers (Russian), Vestnik Moskov. Univ., Ser. I Math. Mekh., no. 6 (1987), 25-29. · Zbl 0635.10025 [15] [S] , Function with integral parameters, deviating the last from zero (en russe), Leningrad. Gos. Univ., Ucen. Zap. Ser. Mat. Nauk, 111 (1949), 32-46. [16] [SZ] , Orthogonal Polynomials, 4th ed., American Math. Soc., New York, 1975. · Zbl 0305.42011 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.