zbMATH — the first resource for mathematics

Local definiteness, primarity and quasiequivalence of quasifree Hadamard quantum states in curved spacetime. (English) Zbl 0790.53077
Summary: We prove that the GNS-representations of quasifree, Hadamard states on the Weyl-algebra of the quantized Klein-Gordon field propagating in an arbitrary globally hyperbolic spacetime are locally quasiequivalent. We also show that these representations satisfy local primarity and local definiteness if the spacetime is assumed to be ultrastatic. This implies that the local von Neumann algebras associated with these representations are type \(III_ 1\)-factors for sufficiently small regions in ultrastatic spacetimes.

53Z05 Applications of differential geometry to physics
83C47 Methods of quantum field theory in general relativity and gravitational theory
Full Text: DOI
[1] [Ara] Araki, H.: A lattice of von Neumann algebras associated with the quantum theory of a free Bose field. J. Math. Phys.4, 1343–1362 (1963) · Zbl 0132.43805 · doi:10.1063/1.1703912
[2] [AY] Araki, H., Yamagami, S.: On quasi-equivalence of quasifree states of the canonical commutation relations. Publ RIMS, Kyoto Univ.18, 283–338 (1982) · Zbl 0505.46052
[3] [Ban] Bannier, U.: On generally covariant quantum field theory and generalized causal and dynamical structures. Commun. Math. Phys.118, 163–170 (1988) · Zbl 0655.46058 · doi:10.1007/BF01218481
[4] [Buc] Buchholz, D.: Product states for local algebras. Commun. Math. Phys.36, 287–304 (1974) · Zbl 0289.46050 · doi:10.1007/BF01646201
[5] [BW] Baumgärtel, H., Wollenberg, M.: Causal nets of operator algebras. Berlin: Akademie Verlag 1992 · Zbl 0749.46038
[6] [CFKS] Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger operators. Berlin, Heidelberg, New York: Springer 1987
[7] [Che] Chernoff, P.R.: Essential self-adjointness of powers of generators of hyperbolic equations. J. Funct. Anal.12, 401–414 (1973) · Zbl 0263.35066 · doi:10.1016/0022-1236(73)90003-7
[8] [D] Dieudonné, J.: Treatise on analysis. Vol. III. New York: Academic Press 1972 · Zbl 0268.58001
[9] [Die] Dieckmann, J.: Cauchy-surfaces in globally hyperbolic spacetime. J. Math. Phys.29, 578 (1988) · Zbl 0644.53061 · doi:10.1063/1.528050
[10] [Dim] Dimock, J.: Algebras of local observables on a manifold. Commun. Math. Phys.77 219–228 (1980) · Zbl 0455.58030 · doi:10.1007/BF01269921
[11] [Dix] Dixmier, J.: LesC *-algèbres et leurs représentations. Paris: Gauthier-Villars, 1964
[12] [FH1] Fredenhagen, K., Haag, R.: Generally covariant quantum field theory and scaling limits. Commun. Math. Phys.108, 91–115 (1987) · Zbl 0626.46063 · doi:10.1007/BF01210704
[13] [FH2] Fredenhagen, K., Haag, R.: On the derivation of Hawking radiation associated with the formation of a black hole. Commun. Math. Phys.127, 273–284 (1990) · Zbl 0692.53040 · doi:10.1007/BF02096757
[14] [FNW] Fulling, S.A., Narcowich, F.J., Wald, R.M.: Singularity structure of the two-point function in quantum field theory in curved spacetime. II. Ann. Phys. (N.Y.)136, 243–272 (1981) · Zbl 0495.35054 · doi:10.1016/0003-4916(81)90098-1
[15] [Fri] Friedlander, F.G.: The wave equation on a curved spacetime. Cambridge: Cambridge University Press 1975
[16] [FSW] Fulling, S.A., Sweeny, M., Wald, R.M.: Singularity structure of the two-point function in quantum field theory in curved spacetime. Commun. Math. Phys.63, 257–264 (1978) · Zbl 0401.35065 · doi:10.1007/BF01196934
[17] [Ful] Fulling, S.A.: Aspects of quantum field theory in curved spacetime. Cambridge: Cambridge University Press 1989
[18] [XXX] Garabedian, P.R.: Partial differential equations. New York: Wiley 1964 · Zbl 0124.30501
[19] [GK] Gonnella, G., Kay, B.S.: Can locally Hadamard quantum states have non-local singularities? Class. Quantum Gravity6, 1445–1454 (1989) · Zbl 0678.53082 · doi:10.1088/0264-9381/6/10/013
[20] [H1] Haag, R.: Quantum physics and gravitation. In: Velo, G., Wightman, A.S. (eds.): Constructive quantum field theory II. New York: Plenum Press 1990
[21] [H2] Haag, R.: Local quantum physics. Berlin: Springer 1992
[22] [Haw] Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys.43, 199–220 (1975) · Zbl 1378.83040 · doi:10.1007/BF02345020
[23] [Hei] Heinz, E.: Beiträge zur Störungstheorie der Spektralzerlegung. Math. Ann.123, 415–438 (1951) · Zbl 0043.32603 · doi:10.1007/BF02054965
[24] [HNS] Haag, R., Narnhofer, H., Stein, U.: On quantum field theory in gravitational background. Commun. Math. Phys.94, 219–238 (1984) · doi:10.1007/BF01209302
[25] [Hör] Hörmander, L.: Linear partial differential operators. Berlin: Springer 1969 · Zbl 0175.39201
[26] [Kay1] Kay, B.S.: Linear spin-zero quantum fields in external gravitational and scalar fields. Commun. Math. Phys.62, 55–70 (1978) · doi:10.1007/BF01940330
[27] [Kay2] Kay, B.S.: In: Proc. 10th Inter. Conf. on General Relativity and Gravitation (Padova, 1983), eds. B. Bertotti et al. (Reidel, Dordrecht, 1984), talk (see Workshop Chairman’s report by A. Ashtekar, pp. 453–456); see also: Kay, B.S.: Casimir effect in quantum field theory. Phys. Rev. D20, 3052–62 (1979)
[28] [Kay3] Kay, B.S.: The double-wedge algebra for quantum fields on Schwarzschild and Minkowski spacetimes. Commun. Math. Phys.100, 57–81 (1985) · Zbl 0578.46062 · doi:10.1007/BF01212687
[29] [Kay4] Kay, B.S.: A uniqueness result for quasifree KMS states. Helv. Phys. Acta58, 1017–1029 (1985)
[30] [Kay5] Kay, B.S.: Quantum field theory in curved spacetime. In: Bleuler, K., Werner, M. (eds.): Differential geometric methods in theoretical physics. Dordrecht: Kluwer Acadamic Publishers 1988
[31] [KW] Kay, B.S., Wald, R.M.: Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate Killing horizon. Phys. Rep.207, 49–136 (1991) · Zbl 0861.53074 · doi:10.1016/0370-1573(91)90015-E
[32] [LR] Lüders, C., Roberts, J.E.: Local quasiequivalence and adiabatic vacuum states. Commun. Math. Phys.134, 29–63 (1990) · Zbl 0749.46045 · doi:10.1007/BF02102088
[33] [LRT] Leyland, P., Roberts, J.E., Testard, D.: Duality for quantum free fields. Preprint, Marseille (1978)
[34] [MV] Manuceau, J., Verbeure, A.: Quasifree states of the CCR-algebra and Bogoliubov transformations. Commun. Math. Phys.9, 293–302 (1968) · Zbl 0167.55902 · doi:10.1007/BF01654283
[35] [Rad] Radzikowski, M.J.: The Hadamard condition and Kay’s conjecture in (axiomatic) quantum field theory on curved space-time. Doctoral Dissertation, Princeton University, 1992
[36] [RS] Reed, M., Simon, B.: Methods of modern mathematical physics. II. New York: Academic Press 1975
[37] [S] Schwartz, L.: Théorie des distributions. Paris: Hermann 1957
[38] [Wa1] Wald, R.M.: The back reaction effect in particle creation in curved spacetime. Commun. Math. Phys.54, 1–19 (1977) · Zbl 1173.81328 · doi:10.1007/BF01609833
[39] [Wal2] Wald, R.M.: Trace anomaly of a conformally invariant quantum field in curved spacetime. Phys. Rev. D17, 1477–84 (1978) · doi:10.1103/PhysRevD.17.1477
[40] [Wal3] Wald, R.M.: General relativity. Chicago: University of Chicago Press 1984
[41] [Wei] Weidmann, J.: Linear operators in Hilbert spaces. Berlin, Heidelberg, New York: Springer 1980 · Zbl 0434.47001
[42] [Wol] Wollenberg, M.: Scaling limits and type of local algebras over curved spacetime. In: Arveson, W.B. et al. (eds.): Operator algebras and topology, Pitman Research Notes in Mathematics Series 270. Harlow: Longman 1992
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.