Saint-Pierre, Patrick Approximation of the viability kernel. (English) Zbl 0790.65081 Appl. Math. Optimization 29, No. 2, 187-209 (1994). Let \(X\) be a finite-dimensional vector space, \(K\) a compact subset of \(X\). In the paper the viability kernel \(V\) (\(V_ \rho\)) of \(K\) under \(F\) (\(G_ \rho\)) of the differential inclusion \(\dot x(t) \in F(x(t))\), \(x(0) = x_ 0 \in K\) (of its discrete explicit scheme \(x^{n+1} \in G_ \rho(x^ n)\), \(n \geq 0\), \(G_ \rho = 1 + \rho F\), i.e. \((x^{n+1} - x^ n)/\rho \in F(x^ n))\) is studied where \(F\) is a Marchaud map from \(K\) to \(X\). It is proved that, for a good choice of discretizations, the sequence of \(V_ \rho\) converges to \(V\) if \(F\) is Lipschitzian. Reviewer: M.Bartušek (Brno) Cited in 2 ReviewsCited in 70 Documents MSC: 65L99 Numerical methods for ordinary differential equations 34A60 Ordinary differential inclusions Keywords:convergence; viability kernel; differential inclusion; Marchaud map; choice of discretizations × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Aubin J-P (1987) Smooth and heavy solutions to control problems. In: Nonlinear and Convex Analysis (B-L Lin, Simons S, eds). Proceedings in honor of KY-Fan, June 24-26, 1985. Lecture Notes in Pure and Applied Mathematics [2] Aubin J-P (1991) Viability Theory. Birkhäuser, Basel [3] Aubin J-P, Byrnes CI, Isidori A (1990) Viability Kernels, Controlled Invariance and Zero Dynamics. Proceedings of the 9th International Conference on Analysis and Optimization of Systems. Lecture Notes in Control and Information Sciences, Vol 144. Springer-Verlag, Berlin · Zbl 0713.93026 [4] Aubin J-P, Celina A (1984) Differential Inclusions. Springer-Verlag, Berlin [5] Aubin J-P, Frankowska H (1991) Set-Valued Analysis. Birkhäuser, Basel [6] Basile G, Marro G (1969) L’invarianza rispetto ai disturbi studiata nell spazio degli stati. Rendic. LXX Riunnione Annuale AEI, paper 1.4.01 [7] Berge C (1966) Espaces Topologiques, Fonctions Multivoques. Dunod, Paris · Zbl 0164.52902 [8] Byrnes CI, Isidori A (1990) Régulation asymptotique de systèmes non linéaires. C R Acad Sci Paris 309:527-530 [9] Byrnes CI, Isidori A (1990) Feedback design from the zero dynamics point of view. In: Computation and Control (Bowers K, Lunds J, eds). Birkhäuser, Basel, pp 23-52 [10] Capuzzo-Doicetta I, Falcone M (1989) Discrete dynamic programming and viscosity solutions of the Bellman equation. In: Analyse Non Linéaire (Attouch H, Aubin J-P, Clarke F, Ekeland I, eds). Gauthier-Villars, Paris, C.R.M., Montréal, pp 161-184 · Zbl 0674.49028 [11] Cardaliaguet P (1992) Conditions suffisantes de non-vacuité du noyau de viabilité. C R Acad Sci Paris Ser I [12] Colombo G, Krivan V (1991) A viability algorithm. Preprint, SISSA [13] Domingues H, Lacoude P. (1992) Le problème du nageur et de l’île: un exemple numérique de viabilité. Master’s Dissertation, University Paris IX-Dauphine [14] Filippov AF, (1967) Classical solutions of differential equations with multivalued right-hand side. Siam J Control 5:609-621 · Zbl 0238.34010 · doi:10.1137/0305040 [15] Frankowska H (to appear) Set-Valued Analysis and Control Theory. Birkhäuser, Basel [16] Frankowska H, Quincampoix M (1991) Viability kernels of differential inclusions with constraints: algorithm and applications. J Math Systems Estimation Control 1(3):371-388 · Zbl 0719.58007 [17] Haddad G (1981) Monotone viable trajectories for functional differential inclusions. J. Differential Equations 42:1-24 · Zbl 0472.34043 · doi:10.1016/0022-0396(81)90031-0 [18] Morin P, Vandanjon P (1991) Détermination numérique du noyau de viabilité pour un exemple économique. Master’s Dissertation, University Paris IX-Dauphine [19] Quincampoix M (1990) Frontière de domaines d’invariance et de viabilité pour des inclusions différentielles avec contraintes. C R Acad Sci Paris Ser I 311:904-914 [20] Saint-Pierre P (1990) Approximation of slow solutions to differential inclusions. Appl Math Optim 22:311-330 · Zbl 0718.49020 · doi:10.1007/BF01447333 [21] Saint-Pierre P (1991) Viability of boundary of the viability kernel. J Differential Integral Equations 4(3): 1147-153 · Zbl 0732.34014 [22] Saint-Pierre P (1992) The Viability Kernel Algorithm Applied To Locate and Approximate all Bounded Zeros of ?-Lipschitz Set-valued Maps. Cahiers de Mathematiques de la Décision, Université Paris IX-Dauphine [23] Saint-Pierre P (1993) The Frame Refinement Method To Approximate Viability Kernel. Applications. Cahiers de Mathematiques de la Décision, Université Paris IX-Dauphine [24] Silverman LMJP (1969) Inversion of multivariable systems. IEEE Trans Automat Control 14:270-276 · doi:10.1109/TAC.1969.1099169 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.