zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Invariant-conserving finite difference algorithms for the nonlinear Klein-Gordon equation. (English) Zbl 0790.65101
A formalism to derive second-order invariant-conserving finite difference algorithms for the nonlinear Klein-Gordon equation is presented. Three algorithms are proposed which conserve in discrete form either the total energy or the momentum. A geometric interpretation of the algorithms is given and their stability and accuracy are investigated. An efficient solution procedure is discussed for the computer implementation of the proposed algorithms and several numerical examples are presented, which include collisions of solitary waves to demonstrate the conservation and robustness properties of those algorithms.

65Z05Applications of numerical analysis to physics
65M06Finite difference methods (IVP of PDE)
65M12Stability and convergence of numerical methods (IVP of PDE)
81Q05Closed and approximate solutions to quantum-mechanical equations
35Q53KdV-like (Korteweg-de Vries) equations
Full Text: DOI
[1] Infeld, E.; Rowlands, G.: Nonlinear waves, solitons and chaos. (1990) · Zbl 0726.76018
[2] Liouville, J. J.: Mathématiques pures et appliquées (Paris). 18, 71-72 (1853)
[3] Dashen, R. F.; Hasslacher, B.; Neuveu, A.: Nonperturbative methods and extended hadron models in field theory II. Two-dimensional model and extended hadrons. Phys. rev. 10, 4130-4138 (1974)
[4] Eilbeck, J. C.: Numerical studies of solitons. Solitons and condensed matter physics, 28-43 (1978)
[5] Scott, A. C.: Active and nonlinear wave propagation in electronics. (1970)
[6] Gibbon, J. D.; James, I. N.; Moroz, I. M.: The sine-Gordon equation as a model for a rapidly rotating baroclinic fluid. Phys. scripta 20, 402-408 (1979) · Zbl 1063.76534
[7] Barone, A.; Esposito, F.; Magee, C. J.; Scott, A. C.: Theory and applications of the sine-Gordon equation. Riv. nuovo cimento 1, 227-267 (1971)
[8] Jr., G. L. Lamb: Elements of soliton theory. (1980)
[9] Fordy, A. P.: Soliton theory: A survey of results. (1990) · Zbl 0747.35025
[10] Whitham, G. B.: Linear and nonlinear waves. (1974) · Zbl 0373.76001
[11] Zabusky, N. J.; Kruskal, M. D.: Phys. rev. Lett.. 15, 240-243 (1965)
[12] Roseau, M.: Vibrations in mechanical systems: analytical methods and applications. (1987) · Zbl 0644.70001
[13] Gardner, C. S.; Greene, J. M.; Kruskal, M. D.; Miura, R. M.: Method for solving the Korteweg-de Vries equation. Phys. rev. Lett. 19, 1095-1097 (1967) · Zbl 1061.35520
[14] Jr., G. L. Lamb: Higher conservation laws in ultrashort optical pulse propagation. Phys. lett. 32A, 251-252 (1970)
[15] Steudel, H.: Noether’s theorem and higher conservation laws in ultrashort pulse propagation. Ann. phys. 7, 217-226 (1975)
[16] Ablowitz, M. J.; Kaup, D. J.; Newell, A. C.; Segur, H.: Method for solving the sine-Gordon equation. Phys. rev. Lett. 30, 1262-1264 (1973)
[17] Fadeev, L. D.: A Hamiltonian interpretation of the inverse scattering method. Solitons (1980) · Zbl 0456.65051
[18] Kitchenside, P. W.; Caudrey, P. J.; Bullough, R. K.: Soliton-like spin waves in 3He B. Phys. scripta 20, 673-680 (1979) · Zbl 0418.35069
[19] Dodd, R. K.; Eilbeck, J. C.; Gibbon, J. D.; Morris, H. C.: Solitons and nonlinear wave equations. (1982) · Zbl 0496.35001
[20] Lax, P. D.: Integrals of nonlinear equations of evolution and solitary waves. Comm. pure appl. Math. 21, 467-490 (1968) · Zbl 0162.41103
[21] Argyris, J.; Haase, M.: An engineer’s guide to soliton phenomena: application of the finite element method. Comput. methods appl. Mech. engrg. 61, 71-122 (1987) · Zbl 0624.76020
[22] Gardner, L. R. T.; Gardner, G. A.; Ali, A. H. A.: Simulations of solitons using quadratic spline finite elements. Comput. methods appl. Mech. engrg. 92, 231-243 (1991) · Zbl 0825.76417
[23] Carey, G. F.; Shen, Y.: Approximations for the KdV equation by least squares finite elements. Comput. methods appl. Mech. engrg. 93, 1-11 (1991) · Zbl 0747.76062
[24] Ablowitz, M. J.; Kruskal, M. D.; Ladik, J. F.: Solitary wave collisions. SIAM J. Appl. math. 36, 428-437 (1979) · Zbl 0408.65075
[25] Strikwerda, J. C.: Finite difference schemes and partial differential equations. (1989) · Zbl 0681.65064
[26] Hughes, T. J. R.; Caughey, T. K.; Liu, W. K.: Finite element methods for nonlinear elastodynamics which conserve energy. ASME J. Appl. mech. 45, 366-370 (1978) · Zbl 0392.73075
[27] Greenspan, D.: Conservative numerical methods for x\ddot{} = $f(x)$. J. comput phys. 56, 28-41 (1984) · Zbl 0561.65056
[28] Chin, Y. S.; Qin, C.: Explicit energy-conserving schemes for the three-body problem. J. comput. Phys. 83, 485-493 (1989) · Zbl 0673.70011
[29] Simo, J. C.; Honein, T.: Variational formulation, discrete conservation laws, and path-domain independent integrals for elasto-viscoplasticity. ASME J. Appl. mech. 57, 488-497 (1990) · Zbl 0739.73046
[30] Strauss, W.; Vazquez, L.: Numerical solution of a nonlinear Klein-Gordon equation. J. comput. Phys. 28, 271-278 (1978) · Zbl 0387.65076
[31] Lomdahl, P. S.; Soerensen, O. H.; Christiansen, P. L.; Scott, A. C.; Eilbeck, J. C.: Bunched multi-solitons in Josephson tunnel junctions. Phys. rev. 24, 7460-7462 (1981)
[32] Luke, J. C.: A note on particle-like solutions for a nonlinear complex-valued Klein-Gordon equation. SIAM J. Appl. math. 51, 1194-1204 (1991) · Zbl 0770.35066
[33] Morawetz, C. S.: Time decay for the nonlinear Klein-Gordon equation. Proc. roy. Soc. London ser. 306, 291-296 (1968) · Zbl 0157.41502
[34] Morawetz, C. S.: 2nd edition]Notes on time decay and scattering for some hyperbolic problems. ]Notes on time decay and scattering for some hyperbolic problems (1975) · Zbl 0303.35002
[35] Richtmyer, R. D.; Morton, K. W.: Difference methods for initial value problems. (1967) · Zbl 0155.47502
[36] Ames, W. F.: Numerical methods for partial differential equations. (1977) · Zbl 0577.65077
[37] Smith, G. D.: Numerical solution of partial differential equations: finite difference methods. (1985) · Zbl 0576.65089
[38] Kitchenside, P. W.; Bullough, R. K.; Caudrey, P. J.: Creation of spin waves in 3He B. Solitons and condensed matter physics, 291-296 (1978)
[39] Christiansen, P. L.; Lomdahl, P. S.; Scott, A. C.; Soerensen, O. H.; Eilbeck, J. C.: Internal dynamics of long Josephson junction oscillators. Appl. phys. Lett. 39, 108-110 (1981)
[40] Christiansen, P. L.; Lomdahl, P. S.: Numerical study of 2 + 1 dimensional sine-Gordon solitons. Physica 2, 482-494 (1981) · Zbl 1194.65122
[41] Kudryavtsev, A. E.: Soliton-like solutions for a Higgs scalar field. JETP lett. 22, 82-83 (1975)
[42] Wingate, C. A.: Numerical search for a ${\phi}4$ breather mode. SIAM J. Appl. math. 43, 120-140 (1983)
[43] Bullough, R. K.; Caudrey, P. J.; Gibbs, H. M.: The double sine-Gordon equations: A physically applicable system of equations. Solitons (1980)
[44] Bullough, R. K.; Caudrey, P. J.: The multiple sine-Gordon equations in non-linear optics and in liquid 3He. Nonlinear evolution equations solvable by the spectral transform (1978) · Zbl 0399.35023
[45] SIAM J. Numer. Anal. submitted.
[46] Calogero, F.: Nonlinear evolution equations solvable by the spectral transform. (1978) · Zbl 0435.35070