\(L\)-systems and mutually recursive function systems. (English) Zbl 0790.68056

The authors investigate the relationships between two different approaches to generate fractal images – \(L\)-systems and Mutually Recursive Function Systems (MRFS). Two different ways in which \(L\)- systems have been used to generate images are considered. The first is the well-known turtle geometry method, and the other is the vector interpretation method as used by Dedekind. It is shown that a uniformly growing D0L-systems can be simulated by an MRFS, and any D0L-system can be simulated by an MRFS with a control set produced by an iterative GSM.


68Q45 Formal languages and automata
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
Full Text: DOI


[1] Barnsley, M.F.: Fractals everywhere. New York: Academic Press 1988 · Zbl 0691.58001
[2] Barnsley, M.F., Jacquin, A., Reuter, L., Sloan, A.D.: Harnessing chaos for image synthesis. Computer Graphics, SIGGRAPH 1988 Conference Proceedings
[3] Barnsley, M.F., Elton, J.H., Hardin, D.P.: Recurrent iterated function systems. Construct. Approx.5, 3-31 (1989) · Zbl 0659.60045
[4] Barnsley, M.F., Devaney, R.L., Mandelbrot, B.B., Peitgen, H-O., De Saupe, Voss, R.F.: Science of fractal images. Berlin Heidelberg New York: Springer 1988 · Zbl 0683.58003
[5] Culik K. II, Dube, S.: Affine automata and related techniques for generation of complex images, Theor. Comput. Sci. Preliminary version in Proceedings of MFCS’1990 (Lect. Notes Comput. Sci., vol. 452, pp. 224-231) Berlin Heidelberg New York: Springer 1990 · Zbl 0779.68062
[6] Culik, K. II, Dube, S.: Rational and affine expressions for image Discrete Appl. Math. (to appear). Preliminary version: Automata-Theoretic Techniques for Image Generation and Compression, Proceedings of FST-TCS’1990 (Lect. Notes Comput. Sci., vol. 472, pp. 76-90). Berlin Heidelberg New York: Springer 1990 · Zbl 0733.68098
[7] Culik, K. II, Dube, S.: Balancing order and chaos in image generation. Comput. and Graphics (to appear) Preliminary version in Proceedings of ICALP’91 (Lect. Notes Comput. Sci., vol. 510, pp. 600-614) Berlin Heidelberg New York: Springer 1991 · Zbl 0769.68120
[8] Dekking, F.M.: Recurrent sets. Adv. Math.44, 78-104 (1982) · Zbl 0495.51017
[9] Dekking, F.M.: Recurrent sets: A fractal formalism. Report 82-32, Delft University of Technology, 1982 · Zbl 0495.51017
[10] Frijters, D., Lindenmayer, A.: A model for the growth and flowering ofAster novae-angliae on the basis of table (1, 0) L-systems. In: Rozenberg, G., Salomaa, A. (eds.) L-Systems. (Lect. Notes Comput. Sci., vol. 15, pp. 24-52) Berlin Heidelberg New York: Springer 1974 · Zbl 0293.92007
[11] Giessmann, E.G.: Generation of fractal curves by generalizations of Lindemayer’s L-systems. Proceedings of FRACTAL’90, Plymouth State College, New Hampshire 1990
[12] Hogeweg, P., Hesper, B.: A model study on biomorphological description. Pattern Recogn.6, 165-179 (1974)
[13] Lindenmayer, A.: Mathematical models for cellular interaction in development, Parts I & II. J. Theor. Biol.18, 280-315 (1968)
[14] Mandelbrot, B.: The fractal geometry of nature. San Francisco: W.H. Freeman 1982 · Zbl 0504.28001
[15] Prusinkiewicz, P.: Applications of L-systems to computer imagery. In: Ehrig, H., Nagl, M., Rosenfeld, A., Rozenberg, G. (eds.) Graph grammars and their application to computer science. (Lect. Notes Comput. Sci., vol. 291, pp. 534-548) Berlin Heidelberg New York: Springer 1987
[16] Prusinkiewicz, P.: Graphical applications of L-systems. Proceedings of graphics interface’86-Vision Interface’86, pp. 247-253 (1986)
[17] Prusinkiewicz, P., Lindenmayer, A.: The algorithmic beauty of plants. Berlin Heidelberg New York: Springer 1990 · Zbl 0850.92038
[18] Shallit, J., Stolfi, J.: Two methods for generating fractals. Comput. and Graphics13, 185-191 (1989)
[19] Smith, A.R.: Plants, fractals, and formal languages. Computer Graphics18, 1-10 (1984)
[20] Szilard, A.L., Quinton, R.E.: An interpretation for D0L systems by computer graphics. Sci. Terrapin4, 8-13 (1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.