×

zbMATH — the first resource for mathematics

Fuzzy logics and observables. (English) Zbl 0791.03038
Fuzzy logic is a system of fuzzy subsets which is closed with respect to Zadeh’s fuzzy complementation and countable Giles bold union. For these logics, an integral representation of a state, and a representation of mean value of observables are presented.

MSC:
03G12 Quantum logic
81P10 Logical foundations of quantum mechanics; quantum logic (quantum-theoretic aspects)
03B52 Fuzzy logic; logic of vagueness
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Butnariu, D. (1986).Journal of Mathematical Analysis and Applications,117, 385-410. · Zbl 0614.28020
[2] Butnariu, D., and Klement, E. P. (1991).Journal of Mathematical Analysis and Applications,162, 111-143. · Zbl 0751.60003
[3] Dubois, D., and Prade, H. (1985).Information Science,36, 85-121. · Zbl 0582.03040
[4] Dvure?enskij, A., and Rie?an, B. (1991).International Journal of General Systems,20, 39-54. · Zbl 0746.60004
[5] Giles, R. (1976).International Journal of Man-Machine Studies,8, 313-327. · Zbl 0335.02037
[6] Klement, E. P. (1982).Journal of Mathematical Analysis and Applications,86, 345-358. · Zbl 0491.28004
[7] Klement, E. P. (1985).Revue Roumaine de Mathématiques Pures et Appliquées,30, 375-384.
[8] Kolesárová, A., and Rie?an, B. (1992).Tatramountains Mathematical Publications,1, 73-82.
[9] Kolesárová, A., and Rie?an, B. (n.d.). T?-fuzzy observables, manuscript in preparation. · Zbl 0788.60004
[10] Mesiar, R. (n.d.-a).h-fuzzy quantum logics, to appear. · Zbl 0819.03049
[11] Mesiar, R. (n.d.-b). Fuzzy measurable functions, to appear. · Zbl 0789.28015
[12] Pykacz, J. (1987).Busefal,32, 150-157.
[13] Pykacz, J. (1991). Fuzzy set ideas in foundations of quantum mechanics, inPreprints of the 3 rd IFSA Congress, Mathematics Chapter, Brussels, pp. 205-208.
[14] Pykacz, J. (n.d.). Generalized fuzzy quantum logics,Foundations of Physics, submitted. · Zbl 0662.03055
[15] Rie?an, B. (1988).Busefal,35, 4-6.
[16] Rie?an, B. (1989).Aplikace Matematiky,35, 209-214.
[17] Varadarajan, V. S. (1968).Geometry of Quantum Theory, Van Nostrand, New York. · Zbl 0155.56802
[18] Zadeh, L. A. (1965).Information and Control,8, 338-353. · Zbl 0139.24606
[19] Zadeh, L. A. (1968).Journal of Mathematical Analysis and Applications,23, 421-427. · Zbl 0174.49002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.